L(s) = 1 | + (−0.342 − 0.939i)2-s + (1.51 + 0.847i)3-s + (−0.766 + 0.642i)4-s + (−0.0403 − 0.228i)5-s + (0.279 − 1.70i)6-s + (1.82 − 1.91i)7-s + (0.866 + 0.500i)8-s + (1.56 + 2.55i)9-s + (−0.201 + 0.116i)10-s + (2.79 + 0.492i)11-s + (−1.70 + 0.322i)12-s + (−1.29 + 3.56i)13-s + (−2.42 − 1.06i)14-s + (0.132 − 0.379i)15-s + (0.173 − 0.984i)16-s + (−3.85 − 6.67i)17-s + ⋯ |
L(s) = 1 | + (−0.241 − 0.664i)2-s + (0.872 + 0.489i)3-s + (−0.383 + 0.321i)4-s + (−0.0180 − 0.102i)5-s + (0.114 − 0.697i)6-s + (0.690 − 0.723i)7-s + (0.306 + 0.176i)8-s + (0.521 + 0.853i)9-s + (−0.0636 + 0.0367i)10-s + (0.841 + 0.148i)11-s + (−0.491 + 0.0929i)12-s + (−0.359 + 0.987i)13-s + (−0.647 − 0.283i)14-s + (0.0342 − 0.0980i)15-s + (0.0434 − 0.246i)16-s + (−0.935 − 1.62i)17-s + ⋯ |
Λ(s)=(=(378s/2ΓC(s)L(s)(0.907+0.419i)Λ(2−s)
Λ(s)=(=(378s/2ΓC(s+1/2)L(s)(0.907+0.419i)Λ(1−s)
Degree: |
2 |
Conductor: |
378
= 2⋅33⋅7
|
Sign: |
0.907+0.419i
|
Analytic conductor: |
3.01834 |
Root analytic conductor: |
1.73733 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ378(209,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 378, ( :1/2), 0.907+0.419i)
|
Particular Values
L(1) |
≈ |
1.63280−0.359494i |
L(21) |
≈ |
1.63280−0.359494i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.342+0.939i)T |
| 3 | 1+(−1.51−0.847i)T |
| 7 | 1+(−1.82+1.91i)T |
good | 5 | 1+(0.0403+0.228i)T+(−4.69+1.71i)T2 |
| 11 | 1+(−2.79−0.492i)T+(10.3+3.76i)T2 |
| 13 | 1+(1.29−3.56i)T+(−9.95−8.35i)T2 |
| 17 | 1+(3.85+6.67i)T+(−8.5+14.7i)T2 |
| 19 | 1+(−2.59−1.49i)T+(9.5+16.4i)T2 |
| 23 | 1+(−2.84−3.38i)T+(−3.99+22.6i)T2 |
| 29 | 1+(2.66+7.31i)T+(−22.2+18.6i)T2 |
| 31 | 1+(−0.0308−0.0367i)T+(−5.38+30.5i)T2 |
| 37 | 1+(−5.34−9.25i)T+(−18.5+32.0i)T2 |
| 41 | 1+(5.22+1.90i)T+(31.4+26.3i)T2 |
| 43 | 1+(0.0109−0.0621i)T+(−40.4−14.7i)T2 |
| 47 | 1+(7.18+6.02i)T+(8.16+46.2i)T2 |
| 53 | 1−10.8iT−53T2 |
| 59 | 1+(1.35+7.65i)T+(−55.4+20.1i)T2 |
| 61 | 1+(5.20−6.20i)T+(−10.5−60.0i)T2 |
| 67 | 1+(13.8+5.02i)T+(51.3+43.0i)T2 |
| 71 | 1+(6.22−3.59i)T+(35.5−61.4i)T2 |
| 73 | 1+(7.95+4.59i)T+(36.5+63.2i)T2 |
| 79 | 1+(9.36−3.40i)T+(60.5−50.7i)T2 |
| 83 | 1+(3.51−1.27i)T+(63.5−53.3i)T2 |
| 89 | 1+(2.75−4.76i)T+(−44.5−77.0i)T2 |
| 97 | 1+(−9.53−1.68i)T+(91.1+33.1i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.43571384867623627945615138966, −10.23230145400498204446216429226, −9.437515691177376624835931880539, −8.859330333697841430929646768333, −7.70751843322327597583969566880, −6.92566031262644403748282213137, −4.80963515851761506077918012964, −4.27459841924713271031577165033, −2.95277981230077951627846455471, −1.56980422985595043121037958902,
1.56588819047187209540073691440, 3.10276681451199369800203648636, 4.55778986536108085852092749261, 5.85592847762170377640153090112, 6.84908494646690683765745599392, 7.76328543865458478377088616106, 8.737645059556231258544261497641, 9.022262047086704063361489311715, 10.38914834557517532651083709911, 11.39095689700699069316433198220