L(s) = 1 | + 0.642i·3-s + 3.58i·7-s + 2.58·9-s − 1.35i·13-s + 5.58i·17-s − 19-s − 2.30·21-s + 4.87i·23-s + 3.58i·27-s − 9.58·29-s − 7.17·31-s − 0.945i·37-s + 0.871·39-s + 10.4·41-s + 2.71i·43-s + ⋯ |
L(s) = 1 | + 0.370i·3-s + 1.35i·7-s + 0.862·9-s − 0.376i·13-s + 1.35i·17-s − 0.229·19-s − 0.502·21-s + 1.01i·23-s + 0.690i·27-s − 1.78·29-s − 1.28·31-s − 0.155i·37-s + 0.139·39-s + 1.63·41-s + 0.414i·43-s + ⋯ |
Λ(s)=(=(3800s/2ΓC(s)L(s)(−0.894−0.447i)Λ(2−s)
Λ(s)=(=(3800s/2ΓC(s+1/2)L(s)(−0.894−0.447i)Λ(1−s)
Degree: |
2 |
Conductor: |
3800
= 23⋅52⋅19
|
Sign: |
−0.894−0.447i
|
Analytic conductor: |
30.3431 |
Root analytic conductor: |
5.50846 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3800(3649,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3800, ( :1/2), −0.894−0.447i)
|
Particular Values
L(1) |
≈ |
1.355580032 |
L(21) |
≈ |
1.355580032 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
| 19 | 1+T |
good | 3 | 1−0.642iT−3T2 |
| 7 | 1−3.58iT−7T2 |
| 11 | 1+11T2 |
| 13 | 1+1.35iT−13T2 |
| 17 | 1−5.58iT−17T2 |
| 23 | 1−4.87iT−23T2 |
| 29 | 1+9.58T+29T2 |
| 31 | 1+7.17T+31T2 |
| 37 | 1+0.945iT−37T2 |
| 41 | 1−10.4T+41T2 |
| 43 | 1−2.71iT−43T2 |
| 47 | 1+5.89iT−47T2 |
| 53 | 1+9.81iT−53T2 |
| 59 | 1+10.1T+59T2 |
| 61 | 1−3.28T+61T2 |
| 67 | 1−10.3iT−67T2 |
| 71 | 1−14.3T+71T2 |
| 73 | 1−4.15iT−73T2 |
| 79 | 1+1.28T+79T2 |
| 83 | 1−11.1iT−83T2 |
| 89 | 1−6.45T+89T2 |
| 97 | 1+13.4iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.968708136977542248444540908585, −8.086405394290603406167985462812, −7.45420776331670077984164848906, −6.51435156681031873418921353191, −5.59536003204884577479617124482, −5.33584631366324475094662907077, −4.05960019480092712013542013190, −3.56428376748819566317412804000, −2.30883090086229616369517314445, −1.56372697768125446551306778271,
0.39143926442762275536399869671, 1.41903135605133277498661569868, 2.45743926949288468244277081776, 3.69165310339962767369560678964, 4.28796108798481282090230690788, 5.02279608309189650407825623625, 6.15247918805716268122484083626, 6.87942598608891239478802721835, 7.53182315848715269852763828935, 7.74432118609443604928201055271