Properties

Label 2-3800-5.4-c1-0-73
Degree $2$
Conductor $3800$
Sign $-0.894 + 0.447i$
Analytic cond. $30.3431$
Root an. cond. $5.50846$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.642i·3-s − 3.58i·7-s + 2.58·9-s + 1.35i·13-s − 5.58i·17-s − 19-s − 2.30·21-s − 4.87i·23-s − 3.58i·27-s − 9.58·29-s − 7.17·31-s + 0.945i·37-s + 0.871·39-s + 10.4·41-s − 2.71i·43-s + ⋯
L(s)  = 1  − 0.370i·3-s − 1.35i·7-s + 0.862·9-s + 0.376i·13-s − 1.35i·17-s − 0.229·19-s − 0.502·21-s − 1.01i·23-s − 0.690i·27-s − 1.78·29-s − 1.28·31-s + 0.155i·37-s + 0.139·39-s + 1.63·41-s − 0.414i·43-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.894 + 0.447i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3800 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.894 + 0.447i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3800\)    =    \(2^{3} \cdot 5^{2} \cdot 19\)
Sign: $-0.894 + 0.447i$
Analytic conductor: \(30.3431\)
Root analytic conductor: \(5.50846\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{3800} (3649, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 3800,\ (\ :1/2),\ -0.894 + 0.447i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.355580032\)
\(L(\frac12)\) \(\approx\) \(1.355580032\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
19 \( 1 + T \)
good3 \( 1 + 0.642iT - 3T^{2} \)
7 \( 1 + 3.58iT - 7T^{2} \)
11 \( 1 + 11T^{2} \)
13 \( 1 - 1.35iT - 13T^{2} \)
17 \( 1 + 5.58iT - 17T^{2} \)
23 \( 1 + 4.87iT - 23T^{2} \)
29 \( 1 + 9.58T + 29T^{2} \)
31 \( 1 + 7.17T + 31T^{2} \)
37 \( 1 - 0.945iT - 37T^{2} \)
41 \( 1 - 10.4T + 41T^{2} \)
43 \( 1 + 2.71iT - 43T^{2} \)
47 \( 1 - 5.89iT - 47T^{2} \)
53 \( 1 - 9.81iT - 53T^{2} \)
59 \( 1 + 10.1T + 59T^{2} \)
61 \( 1 - 3.28T + 61T^{2} \)
67 \( 1 + 10.3iT - 67T^{2} \)
71 \( 1 - 14.3T + 71T^{2} \)
73 \( 1 + 4.15iT - 73T^{2} \)
79 \( 1 + 1.28T + 79T^{2} \)
83 \( 1 + 11.1iT - 83T^{2} \)
89 \( 1 - 6.45T + 89T^{2} \)
97 \( 1 - 13.4iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.74432118609443604928201055271, −7.53182315848715269852763828935, −6.87942598608891239478802721835, −6.15247918805716268122484083626, −5.02279608309189650407825623625, −4.28796108798481282090230690788, −3.69165310339962767369560678964, −2.45743926949288468244277081776, −1.41903135605133277498661569868, −0.39143926442762275536399869671, 1.56372697768125446551306778271, 2.30883090086229616369517314445, 3.56428376748819566317412804000, 4.05960019480092712013542013190, 5.33584631366324475094662907077, 5.59536003204884577479617124482, 6.51435156681031873418921353191, 7.45420776331670077984164848906, 8.086405394290603406167985462812, 8.968708136977542248444540908585

Graph of the $Z$-function along the critical line