L(s) = 1 | − 2-s + 3-s + 4-s − 5-s − 6-s − 8-s + 9-s + 10-s − 3·11-s + 12-s + 13-s − 15-s + 16-s + 2·17-s − 18-s − 20-s + 3·22-s + 6·23-s − 24-s − 4·25-s − 26-s + 27-s + 9·29-s + 30-s − 5·31-s − 32-s − 3·33-s + ⋯ |
L(s) = 1 | − 0.707·2-s + 0.577·3-s + 1/2·4-s − 0.447·5-s − 0.408·6-s − 0.353·8-s + 1/3·9-s + 0.316·10-s − 0.904·11-s + 0.288·12-s + 0.277·13-s − 0.258·15-s + 1/4·16-s + 0.485·17-s − 0.235·18-s − 0.223·20-s + 0.639·22-s + 1.25·23-s − 0.204·24-s − 4/5·25-s − 0.196·26-s + 0.192·27-s + 1.67·29-s + 0.182·30-s − 0.898·31-s − 0.176·32-s − 0.522·33-s + ⋯ |
Λ(s)=(=(3822s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(3822s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
1.412587126 |
L(21) |
≈ |
1.412587126 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+T |
| 3 | 1−T |
| 7 | 1 |
| 13 | 1−T |
good | 5 | 1+T+pT2 |
| 11 | 1+3T+pT2 |
| 17 | 1−2T+pT2 |
| 19 | 1+pT2 |
| 23 | 1−6T+pT2 |
| 29 | 1−9T+pT2 |
| 31 | 1+5T+pT2 |
| 37 | 1+8T+pT2 |
| 41 | 1−4T+pT2 |
| 43 | 1+pT2 |
| 47 | 1+pT2 |
| 53 | 1−T+pT2 |
| 59 | 1−7T+pT2 |
| 61 | 1−4T+pT2 |
| 67 | 1+4T+pT2 |
| 71 | 1−6T+pT2 |
| 73 | 1+6T+pT2 |
| 79 | 1+13T+pT2 |
| 83 | 1−3T+pT2 |
| 89 | 1−8T+pT2 |
| 97 | 1−15T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.681317376442738162759058241445, −7.71697835609979599593253841498, −7.38708268557686291596612228621, −6.50197084254259805345325655638, −5.52888803600150368937602175554, −4.70472973283752392095637994703, −3.60037583418279129967512627544, −2.93242419346131617376141033463, −1.96369416177934919198686589063, −0.74015152998151316997665046224,
0.74015152998151316997665046224, 1.96369416177934919198686589063, 2.93242419346131617376141033463, 3.60037583418279129967512627544, 4.70472973283752392095637994703, 5.52888803600150368937602175554, 6.50197084254259805345325655638, 7.38708268557686291596612228621, 7.71697835609979599593253841498, 8.681317376442738162759058241445