Properties

Label 2-3822-1.1-c1-0-60
Degree 22
Conductor 38223822
Sign 11
Analytic cond. 30.518830.5188
Root an. cond. 5.524385.52438
Motivic weight 11
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank 00

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 3-s + 4-s + 3·5-s + 6-s + 8-s + 9-s + 3·10-s + 3·11-s + 12-s + 13-s + 3·15-s + 16-s + 6·17-s + 18-s − 4·19-s + 3·20-s + 3·22-s + 6·23-s + 24-s + 4·25-s + 26-s + 27-s − 9·29-s + 3·30-s + 5·31-s + 32-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.577·3-s + 1/2·4-s + 1.34·5-s + 0.408·6-s + 0.353·8-s + 1/3·9-s + 0.948·10-s + 0.904·11-s + 0.288·12-s + 0.277·13-s + 0.774·15-s + 1/4·16-s + 1.45·17-s + 0.235·18-s − 0.917·19-s + 0.670·20-s + 0.639·22-s + 1.25·23-s + 0.204·24-s + 4/5·25-s + 0.196·26-s + 0.192·27-s − 1.67·29-s + 0.547·30-s + 0.898·31-s + 0.176·32-s + ⋯

Functional equation

Λ(s)=(3822s/2ΓC(s)L(s)=(Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 3822 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}
Λ(s)=(3822s/2ΓC(s+1/2)L(s)=(Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 3822 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 38223822    =    2372132 \cdot 3 \cdot 7^{2} \cdot 13
Sign: 11
Analytic conductor: 30.518830.5188
Root analytic conductor: 5.524385.52438
Motivic weight: 11
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: 00
Selberg data: (2, 3822, ( :1/2), 1)(2,\ 3822,\ (\ :1/2),\ 1)

Particular Values

L(1)L(1) \approx 5.3896920515.389692051
L(12)L(\frac12) \approx 5.3896920515.389692051
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1T 1 - T
3 1T 1 - T
7 1 1
13 1T 1 - T
good5 13T+pT2 1 - 3 T + p T^{2}
11 13T+pT2 1 - 3 T + p T^{2}
17 16T+pT2 1 - 6 T + p T^{2}
19 1+4T+pT2 1 + 4 T + p T^{2}
23 16T+pT2 1 - 6 T + p T^{2}
29 1+9T+pT2 1 + 9 T + p T^{2}
31 15T+pT2 1 - 5 T + p T^{2}
37 1+4T+pT2 1 + 4 T + p T^{2}
41 1+12T+pT2 1 + 12 T + p T^{2}
43 1+4T+pT2 1 + 4 T + p T^{2}
47 1+12T+pT2 1 + 12 T + p T^{2}
53 1+9T+pT2 1 + 9 T + p T^{2}
59 1+9T+pT2 1 + 9 T + p T^{2}
61 18T+pT2 1 - 8 T + p T^{2}
67 1+4T+pT2 1 + 4 T + p T^{2}
71 16T+pT2 1 - 6 T + p T^{2}
73 114T+pT2 1 - 14 T + p T^{2}
79 1+T+pT2 1 + T + p T^{2}
83 13T+pT2 1 - 3 T + p T^{2}
89 1+pT2 1 + p T^{2}
97 15T+pT2 1 - 5 T + p T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−8.531065978282456215457879186909, −7.73356602369668146701739555938, −6.67160146219577668496172268472, −6.38564627606316414560598133391, −5.40543217614005395992672741313, −4.85847338337314529346900720728, −3.65061445423410425106174718394, −3.15341375148222668338048849723, −1.96311823621411457019581167905, −1.40751542574001392118247404333, 1.40751542574001392118247404333, 1.96311823621411457019581167905, 3.15341375148222668338048849723, 3.65061445423410425106174718394, 4.85847338337314529346900720728, 5.40543217614005395992672741313, 6.38564627606316414560598133391, 6.67160146219577668496172268472, 7.73356602369668146701739555938, 8.531065978282456215457879186909

Graph of the ZZ-function along the critical line