Properties

Label 2-383-1.1-c1-0-19
Degree $2$
Conductor $383$
Sign $1$
Analytic cond. $3.05827$
Root an. cond. $1.74879$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.539·2-s + 2.48·3-s − 1.70·4-s + 2.73·5-s + 1.33·6-s + 1.35·7-s − 2.00·8-s + 3.15·9-s + 1.47·10-s − 4.30·11-s − 4.23·12-s + 5.54·13-s + 0.731·14-s + 6.77·15-s + 2.33·16-s − 5.42·17-s + 1.70·18-s − 3.09·19-s − 4.66·20-s + 3.36·21-s − 2.32·22-s + 1.64·23-s − 4.96·24-s + 2.46·25-s + 2.99·26-s + 0.384·27-s − 2.31·28-s + ⋯
L(s)  = 1  + 0.381·2-s + 1.43·3-s − 0.854·4-s + 1.22·5-s + 0.546·6-s + 0.511·7-s − 0.707·8-s + 1.05·9-s + 0.466·10-s − 1.29·11-s − 1.22·12-s + 1.53·13-s + 0.195·14-s + 1.74·15-s + 0.583·16-s − 1.31·17-s + 0.401·18-s − 0.710·19-s − 1.04·20-s + 0.733·21-s − 0.495·22-s + 0.343·23-s − 1.01·24-s + 0.492·25-s + 0.587·26-s + 0.0739·27-s − 0.437·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 383 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 383 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(383\)
Sign: $1$
Analytic conductor: \(3.05827\)
Root analytic conductor: \(1.74879\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 383,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.449593541\)
\(L(\frac12)\) \(\approx\) \(2.449593541\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad383 \( 1 - T \)
good2 \( 1 - 0.539T + 2T^{2} \)
3 \( 1 - 2.48T + 3T^{2} \)
5 \( 1 - 2.73T + 5T^{2} \)
7 \( 1 - 1.35T + 7T^{2} \)
11 \( 1 + 4.30T + 11T^{2} \)
13 \( 1 - 5.54T + 13T^{2} \)
17 \( 1 + 5.42T + 17T^{2} \)
19 \( 1 + 3.09T + 19T^{2} \)
23 \( 1 - 1.64T + 23T^{2} \)
29 \( 1 - 4.85T + 29T^{2} \)
31 \( 1 + 6.13T + 31T^{2} \)
37 \( 1 - 10.9T + 37T^{2} \)
41 \( 1 + 8.10T + 41T^{2} \)
43 \( 1 + 4.50T + 43T^{2} \)
47 \( 1 + 3.65T + 47T^{2} \)
53 \( 1 + 3.35T + 53T^{2} \)
59 \( 1 - 7.79T + 59T^{2} \)
61 \( 1 - 10.3T + 61T^{2} \)
67 \( 1 + 14.9T + 67T^{2} \)
71 \( 1 + 1.79T + 71T^{2} \)
73 \( 1 - 3.93T + 73T^{2} \)
79 \( 1 - 5.41T + 79T^{2} \)
83 \( 1 - 2.79T + 83T^{2} \)
89 \( 1 + 3.32T + 89T^{2} \)
97 \( 1 - 6.40T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.17084228079869564646258016299, −10.20638039579161506479290398935, −9.310040670450115390300738083369, −8.568099180461786915796849894403, −8.103889767809695101913166576691, −6.44521380780238297035135894535, −5.37571828966961323549967565296, −4.29379723834300177476871531074, −3.05122512669388530863877212551, −1.93524168195246958189899113371, 1.93524168195246958189899113371, 3.05122512669388530863877212551, 4.29379723834300177476871531074, 5.37571828966961323549967565296, 6.44521380780238297035135894535, 8.103889767809695101913166576691, 8.568099180461786915796849894403, 9.310040670450115390300738083369, 10.20638039579161506479290398935, 11.17084228079869564646258016299

Graph of the $Z$-function along the critical line