Properties

Label 2-3840-1.1-c1-0-3
Degree $2$
Conductor $3840$
Sign $1$
Analytic cond. $30.6625$
Root an. cond. $5.53737$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 5-s − 2·7-s + 9-s − 2·11-s + 2·13-s + 15-s − 8·17-s + 8·19-s + 2·21-s + 8·23-s + 25-s − 27-s − 10·29-s − 8·31-s + 2·33-s + 2·35-s − 2·37-s − 2·39-s − 6·41-s + 4·43-s − 45-s − 4·47-s − 3·49-s + 8·51-s + 2·53-s + 2·55-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.447·5-s − 0.755·7-s + 1/3·9-s − 0.603·11-s + 0.554·13-s + 0.258·15-s − 1.94·17-s + 1.83·19-s + 0.436·21-s + 1.66·23-s + 1/5·25-s − 0.192·27-s − 1.85·29-s − 1.43·31-s + 0.348·33-s + 0.338·35-s − 0.328·37-s − 0.320·39-s − 0.937·41-s + 0.609·43-s − 0.149·45-s − 0.583·47-s − 3/7·49-s + 1.12·51-s + 0.274·53-s + 0.269·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3840 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3840 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3840\)    =    \(2^{8} \cdot 3 \cdot 5\)
Sign: $1$
Analytic conductor: \(30.6625\)
Root analytic conductor: \(5.53737\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 3840,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.8628727221\)
\(L(\frac12)\) \(\approx\) \(0.8628727221\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + T \)
5 \( 1 + T \)
good7 \( 1 + 2 T + p T^{2} \)
11 \( 1 + 2 T + p T^{2} \)
13 \( 1 - 2 T + p T^{2} \)
17 \( 1 + 8 T + p T^{2} \)
19 \( 1 - 8 T + p T^{2} \)
23 \( 1 - 8 T + p T^{2} \)
29 \( 1 + 10 T + p T^{2} \)
31 \( 1 + 8 T + p T^{2} \)
37 \( 1 + 2 T + p T^{2} \)
41 \( 1 + 6 T + p T^{2} \)
43 \( 1 - 4 T + p T^{2} \)
47 \( 1 + 4 T + p T^{2} \)
53 \( 1 - 2 T + p T^{2} \)
59 \( 1 - 6 T + p T^{2} \)
61 \( 1 + p T^{2} \)
67 \( 1 - 12 T + p T^{2} \)
71 \( 1 + 8 T + p T^{2} \)
73 \( 1 - 6 T + p T^{2} \)
79 \( 1 + 8 T + p T^{2} \)
83 \( 1 - 8 T + p T^{2} \)
89 \( 1 - 6 T + p T^{2} \)
97 \( 1 - 10 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.638551538442009893577523164070, −7.42453918815745026023592410788, −7.14082162084889437091737778969, −6.31312099042302818818590735279, −5.41051129030844572729002610372, −4.89112307430868275798271944931, −3.75282749942956815280684885618, −3.17592623893454142168104729943, −1.92860669592669570819603903176, −0.53824953394909956001202651788, 0.53824953394909956001202651788, 1.92860669592669570819603903176, 3.17592623893454142168104729943, 3.75282749942956815280684885618, 4.89112307430868275798271944931, 5.41051129030844572729002610372, 6.31312099042302818818590735279, 7.14082162084889437091737778969, 7.42453918815745026023592410788, 8.638551538442009893577523164070

Graph of the $Z$-function along the critical line