L(s) = 1 | + (0.857 − 0.514i)2-s + (−0.941 + 0.336i)3-s + (0.471 − 0.881i)4-s + (0.803 − 0.595i)5-s + (−0.634 + 0.773i)6-s + (−0.0490 − 0.998i)8-s + (0.773 − 0.634i)9-s + (0.382 − 0.923i)10-s + (−0.146 + 0.989i)12-s + (−0.555 + 0.831i)15-s + (−0.555 − 0.831i)16-s + (1.09 + 1.64i)17-s + (0.336 − 0.941i)18-s + (0.0504 + 0.0841i)19-s + (−0.146 − 0.989i)20-s + ⋯ |
L(s) = 1 | + (0.857 − 0.514i)2-s + (−0.941 + 0.336i)3-s + (0.471 − 0.881i)4-s + (0.803 − 0.595i)5-s + (−0.634 + 0.773i)6-s + (−0.0490 − 0.998i)8-s + (0.773 − 0.634i)9-s + (0.382 − 0.923i)10-s + (−0.146 + 0.989i)12-s + (−0.555 + 0.831i)15-s + (−0.555 − 0.831i)16-s + (1.09 + 1.64i)17-s + (0.336 − 0.941i)18-s + (0.0504 + 0.0841i)19-s + (−0.146 − 0.989i)20-s + ⋯ |
Λ(s)=(=(3840s/2ΓC(s)L(s)(0.359+0.932i)Λ(1−s)
Λ(s)=(=(3840s/2ΓC(s)L(s)(0.359+0.932i)Λ(1−s)
Degree: |
2 |
Conductor: |
3840
= 28⋅3⋅5
|
Sign: |
0.359+0.932i
|
Analytic conductor: |
1.91640 |
Root analytic conductor: |
1.38434 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3840(1469,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3840, ( :0), 0.359+0.932i)
|
Particular Values
L(21) |
≈ |
1.955298891 |
L(21) |
≈ |
1.955298891 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.857+0.514i)T |
| 3 | 1+(0.941−0.336i)T |
| 5 | 1+(−0.803+0.595i)T |
good | 7 | 1+(−0.980+0.195i)T2 |
| 11 | 1+(0.0980+0.995i)T2 |
| 13 | 1+(0.956−0.290i)T2 |
| 17 | 1+(−1.09−1.64i)T+(−0.382+0.923i)T2 |
| 19 | 1+(−0.0504−0.0841i)T+(−0.471+0.881i)T2 |
| 23 | 1+(−1.71−0.914i)T+(0.555+0.831i)T2 |
| 29 | 1+(−0.995−0.0980i)T2 |
| 31 | 1+(0.674+1.62i)T+(−0.707+0.707i)T2 |
| 37 | 1+(−0.881+0.471i)T2 |
| 41 | 1+(0.831−0.555i)T2 |
| 43 | 1+(0.773+0.634i)T2 |
| 47 | 1+(1.77+0.352i)T+(0.923+0.382i)T2 |
| 53 | 1+(−0.195+0.00961i)T+(0.995−0.0980i)T2 |
| 59 | 1+(0.956+0.290i)T2 |
| 61 | 1+(1.21+0.574i)T+(0.634+0.773i)T2 |
| 67 | 1+(0.634+0.773i)T2 |
| 71 | 1+(0.195+0.980i)T2 |
| 73 | 1+(−0.980−0.195i)T2 |
| 79 | 1+(−0.216−1.08i)T+(−0.923+0.382i)T2 |
| 83 | 1+(1.49+0.375i)T+(0.881+0.471i)T2 |
| 89 | 1+(−0.555+0.831i)T2 |
| 97 | 1+(−0.707+0.707i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.754976334151284026313872981123, −7.59610945463091127382222511223, −6.68633134827692936170181548434, −5.89347611929800609325375905935, −5.56348808787034171734903330177, −4.85266427698434991760666515872, −4.01763698442994564838030174297, −3.24506776499063633577370946611, −1.85587927076272745812810865765, −1.11080994432832434746151460933,
1.38871044047477092385636699953, 2.67655413588398577722202642395, 3.26797546154278265673661624711, 4.70108375886782294619843086255, 5.14532108604631468462947809723, 5.77179392305812511165414418044, 6.61573008516313996191927616692, 7.07725875475548308791239990399, 7.56883017986990507577668825032, 8.731382549967848477030247734676