L(s) = 1 | + (0.857 − 0.514i)2-s + (−0.941 + 0.336i)3-s + (0.471 − 0.881i)4-s + (0.803 − 0.595i)5-s + (−0.634 + 0.773i)6-s + (−0.0490 − 0.998i)8-s + (0.773 − 0.634i)9-s + (0.382 − 0.923i)10-s + (−0.146 + 0.989i)12-s + (−0.555 + 0.831i)15-s + (−0.555 − 0.831i)16-s + (1.09 + 1.64i)17-s + (0.336 − 0.941i)18-s + (0.0504 + 0.0841i)19-s + (−0.146 − 0.989i)20-s + ⋯ |
L(s) = 1 | + (0.857 − 0.514i)2-s + (−0.941 + 0.336i)3-s + (0.471 − 0.881i)4-s + (0.803 − 0.595i)5-s + (−0.634 + 0.773i)6-s + (−0.0490 − 0.998i)8-s + (0.773 − 0.634i)9-s + (0.382 − 0.923i)10-s + (−0.146 + 0.989i)12-s + (−0.555 + 0.831i)15-s + (−0.555 − 0.831i)16-s + (1.09 + 1.64i)17-s + (0.336 − 0.941i)18-s + (0.0504 + 0.0841i)19-s + (−0.146 − 0.989i)20-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3840 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.359 + 0.932i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3840 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.359 + 0.932i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.955298891\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.955298891\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.857 + 0.514i)T \) |
| 3 | \( 1 + (0.941 - 0.336i)T \) |
| 5 | \( 1 + (-0.803 + 0.595i)T \) |
good | 7 | \( 1 + (-0.980 + 0.195i)T^{2} \) |
| 11 | \( 1 + (0.0980 + 0.995i)T^{2} \) |
| 13 | \( 1 + (0.956 - 0.290i)T^{2} \) |
| 17 | \( 1 + (-1.09 - 1.64i)T + (-0.382 + 0.923i)T^{2} \) |
| 19 | \( 1 + (-0.0504 - 0.0841i)T + (-0.471 + 0.881i)T^{2} \) |
| 23 | \( 1 + (-1.71 - 0.914i)T + (0.555 + 0.831i)T^{2} \) |
| 29 | \( 1 + (-0.995 - 0.0980i)T^{2} \) |
| 31 | \( 1 + (0.674 + 1.62i)T + (-0.707 + 0.707i)T^{2} \) |
| 37 | \( 1 + (-0.881 + 0.471i)T^{2} \) |
| 41 | \( 1 + (0.831 - 0.555i)T^{2} \) |
| 43 | \( 1 + (0.773 + 0.634i)T^{2} \) |
| 47 | \( 1 + (1.77 + 0.352i)T + (0.923 + 0.382i)T^{2} \) |
| 53 | \( 1 + (-0.195 + 0.00961i)T + (0.995 - 0.0980i)T^{2} \) |
| 59 | \( 1 + (0.956 + 0.290i)T^{2} \) |
| 61 | \( 1 + (1.21 + 0.574i)T + (0.634 + 0.773i)T^{2} \) |
| 67 | \( 1 + (0.634 + 0.773i)T^{2} \) |
| 71 | \( 1 + (0.195 + 0.980i)T^{2} \) |
| 73 | \( 1 + (-0.980 - 0.195i)T^{2} \) |
| 79 | \( 1 + (-0.216 - 1.08i)T + (-0.923 + 0.382i)T^{2} \) |
| 83 | \( 1 + (1.49 + 0.375i)T + (0.881 + 0.471i)T^{2} \) |
| 89 | \( 1 + (-0.555 + 0.831i)T^{2} \) |
| 97 | \( 1 + (-0.707 + 0.707i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.754976334151284026313872981123, −7.59610945463091127382222511223, −6.68633134827692936170181548434, −5.89347611929800609325375905935, −5.56348808787034171734903330177, −4.85266427698434991760666515872, −4.01763698442994564838030174297, −3.24506776499063633577370946611, −1.85587927076272745812810865765, −1.11080994432832434746151460933,
1.38871044047477092385636699953, 2.67655413588398577722202642395, 3.26797546154278265673661624711, 4.70108375886782294619843086255, 5.14532108604631468462947809723, 5.77179392305812511165414418044, 6.61573008516313996191927616692, 7.07725875475548308791239990399, 7.56883017986990507577668825032, 8.731382549967848477030247734676