L(s) = 1 | + (−0.0490 − 0.998i)2-s + (−0.514 + 0.857i)3-s + (−0.995 + 0.0980i)4-s + (−0.336 − 0.941i)5-s + (0.881 + 0.471i)6-s + (0.146 + 0.989i)8-s + (−0.471 − 0.881i)9-s + (−0.923 + 0.382i)10-s + (0.427 − 0.903i)12-s + (0.980 + 0.195i)15-s + (0.980 − 0.195i)16-s + (−1.77 + 0.352i)17-s + (−0.857 + 0.514i)18-s + (0.293 − 0.0143i)19-s + (0.427 + 0.903i)20-s + ⋯ |
L(s) = 1 | + (−0.0490 − 0.998i)2-s + (−0.514 + 0.857i)3-s + (−0.995 + 0.0980i)4-s + (−0.336 − 0.941i)5-s + (0.881 + 0.471i)6-s + (0.146 + 0.989i)8-s + (−0.471 − 0.881i)9-s + (−0.923 + 0.382i)10-s + (0.427 − 0.903i)12-s + (0.980 + 0.195i)15-s + (0.980 − 0.195i)16-s + (−1.77 + 0.352i)17-s + (−0.857 + 0.514i)18-s + (0.293 − 0.0143i)19-s + (0.427 + 0.903i)20-s + ⋯ |
Λ(s)=(=(3840s/2ΓC(s)L(s)(0.817−0.575i)Λ(1−s)
Λ(s)=(=(3840s/2ΓC(s)L(s)(0.817−0.575i)Λ(1−s)
Degree: |
2 |
Conductor: |
3840
= 28⋅3⋅5
|
Sign: |
0.817−0.575i
|
Analytic conductor: |
1.91640 |
Root analytic conductor: |
1.38434 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3840(1829,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3840, ( :0), 0.817−0.575i)
|
Particular Values
L(21) |
≈ |
0.5201150955 |
L(21) |
≈ |
0.5201150955 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.0490+0.998i)T |
| 3 | 1+(0.514−0.857i)T |
| 5 | 1+(0.336+0.941i)T |
good | 7 | 1+(−0.831+0.555i)T2 |
| 11 | 1+(−0.290−0.956i)T2 |
| 13 | 1+(0.634−0.773i)T2 |
| 17 | 1+(1.77−0.352i)T+(0.923−0.382i)T2 |
| 19 | 1+(−0.293+0.0143i)T+(0.995−0.0980i)T2 |
| 23 | 1+(−0.145−1.47i)T+(−0.980+0.195i)T2 |
| 29 | 1+(−0.956−0.290i)T2 |
| 31 | 1+(−0.181−0.0750i)T+(0.707+0.707i)T2 |
| 37 | 1+(−0.0980+0.995i)T2 |
| 41 | 1+(−0.195−0.980i)T2 |
| 43 | 1+(−0.471+0.881i)T2 |
| 47 | 1+(0.404+0.269i)T+(0.382+0.923i)T2 |
| 53 | 1+(0.574−0.0851i)T+(0.956−0.290i)T2 |
| 59 | 1+(0.634+0.773i)T2 |
| 61 | 1+(−0.390−1.55i)T+(−0.881+0.471i)T2 |
| 67 | 1+(−0.881+0.471i)T2 |
| 71 | 1+(−0.555−0.831i)T2 |
| 73 | 1+(−0.831−0.555i)T2 |
| 79 | 1+(−1.08−1.63i)T+(−0.382+0.923i)T2 |
| 83 | 1+(−0.698−0.633i)T+(0.0980+0.995i)T2 |
| 89 | 1+(0.980+0.195i)T2 |
| 97 | 1+(0.707+0.707i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.943526750034332877729558779680, −8.432807935921744325454486527691, −7.44604976776645421650517867411, −6.27662854953858377005661018473, −5.33890657809636566502527653633, −4.86884408118812987694999941350, −4.05447520768519576978265086784, −3.56500832767071048576532429655, −2.30481221544252903400944467927, −1.07656549670854025249757332210,
0.37899552025106813163824562687, 2.07693893165569425493167294106, 3.07805373918776936566645187723, 4.32440576743959303554071273960, 4.91388820707285859750416352064, 6.01880985376400754085178704481, 6.51217020425965982867717597332, 6.98388091091048291964859618190, 7.66183636598370938439339919619, 8.345639401491680226357575679345