L(s) = 1 | + (−0.0490 − 0.998i)2-s + (−0.514 + 0.857i)3-s + (−0.995 + 0.0980i)4-s + (−0.336 − 0.941i)5-s + (0.881 + 0.471i)6-s + (0.146 + 0.989i)8-s + (−0.471 − 0.881i)9-s + (−0.923 + 0.382i)10-s + (0.427 − 0.903i)12-s + (0.980 + 0.195i)15-s + (0.980 − 0.195i)16-s + (−1.77 + 0.352i)17-s + (−0.857 + 0.514i)18-s + (0.293 − 0.0143i)19-s + (0.427 + 0.903i)20-s + ⋯ |
L(s) = 1 | + (−0.0490 − 0.998i)2-s + (−0.514 + 0.857i)3-s + (−0.995 + 0.0980i)4-s + (−0.336 − 0.941i)5-s + (0.881 + 0.471i)6-s + (0.146 + 0.989i)8-s + (−0.471 − 0.881i)9-s + (−0.923 + 0.382i)10-s + (0.427 − 0.903i)12-s + (0.980 + 0.195i)15-s + (0.980 − 0.195i)16-s + (−1.77 + 0.352i)17-s + (−0.857 + 0.514i)18-s + (0.293 − 0.0143i)19-s + (0.427 + 0.903i)20-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3840 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.817 - 0.575i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3840 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.817 - 0.575i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.5201150955\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.5201150955\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.0490 + 0.998i)T \) |
| 3 | \( 1 + (0.514 - 0.857i)T \) |
| 5 | \( 1 + (0.336 + 0.941i)T \) |
good | 7 | \( 1 + (-0.831 + 0.555i)T^{2} \) |
| 11 | \( 1 + (-0.290 - 0.956i)T^{2} \) |
| 13 | \( 1 + (0.634 - 0.773i)T^{2} \) |
| 17 | \( 1 + (1.77 - 0.352i)T + (0.923 - 0.382i)T^{2} \) |
| 19 | \( 1 + (-0.293 + 0.0143i)T + (0.995 - 0.0980i)T^{2} \) |
| 23 | \( 1 + (-0.145 - 1.47i)T + (-0.980 + 0.195i)T^{2} \) |
| 29 | \( 1 + (-0.956 - 0.290i)T^{2} \) |
| 31 | \( 1 + (-0.181 - 0.0750i)T + (0.707 + 0.707i)T^{2} \) |
| 37 | \( 1 + (-0.0980 + 0.995i)T^{2} \) |
| 41 | \( 1 + (-0.195 - 0.980i)T^{2} \) |
| 43 | \( 1 + (-0.471 + 0.881i)T^{2} \) |
| 47 | \( 1 + (0.404 + 0.269i)T + (0.382 + 0.923i)T^{2} \) |
| 53 | \( 1 + (0.574 - 0.0851i)T + (0.956 - 0.290i)T^{2} \) |
| 59 | \( 1 + (0.634 + 0.773i)T^{2} \) |
| 61 | \( 1 + (-0.390 - 1.55i)T + (-0.881 + 0.471i)T^{2} \) |
| 67 | \( 1 + (-0.881 + 0.471i)T^{2} \) |
| 71 | \( 1 + (-0.555 - 0.831i)T^{2} \) |
| 73 | \( 1 + (-0.831 - 0.555i)T^{2} \) |
| 79 | \( 1 + (-1.08 - 1.63i)T + (-0.382 + 0.923i)T^{2} \) |
| 83 | \( 1 + (-0.698 - 0.633i)T + (0.0980 + 0.995i)T^{2} \) |
| 89 | \( 1 + (0.980 + 0.195i)T^{2} \) |
| 97 | \( 1 + (0.707 + 0.707i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.943526750034332877729558779680, −8.432807935921744325454486527691, −7.44604976776645421650517867411, −6.27662854953858377005661018473, −5.33890657809636566502527653633, −4.86884408118812987694999941350, −4.05447520768519576978265086784, −3.56500832767071048576532429655, −2.30481221544252903400944467927, −1.07656549670854025249757332210,
0.37899552025106813163824562687, 2.07693893165569425493167294106, 3.07805373918776936566645187723, 4.32440576743959303554071273960, 4.91388820707285859750416352064, 6.01880985376400754085178704481, 6.51217020425965982867717597332, 6.98388091091048291964859618190, 7.66183636598370938439339919619, 8.345639401491680226357575679345