L(s) = 1 | + (−0.903 + 0.427i)2-s + (0.146 − 0.989i)3-s + (0.634 − 0.773i)4-s + (−0.998 − 0.0490i)5-s + (0.290 + 0.956i)6-s + (−0.242 + 0.970i)8-s + (−0.956 − 0.290i)9-s + (0.923 − 0.382i)10-s + (−0.671 − 0.740i)12-s + (−0.195 + 0.980i)15-s + (−0.195 − 0.980i)16-s + (0.289 + 1.45i)17-s + (0.989 − 0.146i)18-s + (0.207 + 0.439i)19-s + (−0.671 + 0.740i)20-s + ⋯ |
L(s) = 1 | + (−0.903 + 0.427i)2-s + (0.146 − 0.989i)3-s + (0.634 − 0.773i)4-s + (−0.998 − 0.0490i)5-s + (0.290 + 0.956i)6-s + (−0.242 + 0.970i)8-s + (−0.956 − 0.290i)9-s + (0.923 − 0.382i)10-s + (−0.671 − 0.740i)12-s + (−0.195 + 0.980i)15-s + (−0.195 − 0.980i)16-s + (0.289 + 1.45i)17-s + (0.989 − 0.146i)18-s + (0.207 + 0.439i)19-s + (−0.671 + 0.740i)20-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3840 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.985 + 0.170i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3840 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.985 + 0.170i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.6604217150\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.6604217150\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.903 - 0.427i)T \) |
| 3 | \( 1 + (-0.146 + 0.989i)T \) |
| 5 | \( 1 + (0.998 + 0.0490i)T \) |
good | 7 | \( 1 + (-0.555 - 0.831i)T^{2} \) |
| 11 | \( 1 + (0.471 - 0.881i)T^{2} \) |
| 13 | \( 1 + (0.0980 + 0.995i)T^{2} \) |
| 17 | \( 1 + (-0.289 - 1.45i)T + (-0.923 + 0.382i)T^{2} \) |
| 19 | \( 1 + (-0.207 - 0.439i)T + (-0.634 + 0.773i)T^{2} \) |
| 23 | \( 1 + (0.520 + 0.427i)T + (0.195 + 0.980i)T^{2} \) |
| 29 | \( 1 + (-0.881 + 0.471i)T^{2} \) |
| 31 | \( 1 + (-1.42 - 0.591i)T + (0.707 + 0.707i)T^{2} \) |
| 37 | \( 1 + (0.773 - 0.634i)T^{2} \) |
| 41 | \( 1 + (-0.980 + 0.195i)T^{2} \) |
| 43 | \( 1 + (-0.956 + 0.290i)T^{2} \) |
| 47 | \( 1 + (-0.661 + 0.990i)T + (-0.382 - 0.923i)T^{2} \) |
| 53 | \( 1 + (-0.914 - 0.229i)T + (0.881 + 0.471i)T^{2} \) |
| 59 | \( 1 + (0.0980 - 0.995i)T^{2} \) |
| 61 | \( 1 + (0.612 + 0.825i)T + (-0.290 + 0.956i)T^{2} \) |
| 67 | \( 1 + (-0.290 + 0.956i)T^{2} \) |
| 71 | \( 1 + (0.831 - 0.555i)T^{2} \) |
| 73 | \( 1 + (-0.555 + 0.831i)T^{2} \) |
| 79 | \( 1 + (-0.324 + 0.216i)T + (0.382 - 0.923i)T^{2} \) |
| 83 | \( 1 + (-0.644 + 1.80i)T + (-0.773 - 0.634i)T^{2} \) |
| 89 | \( 1 + (-0.195 + 0.980i)T^{2} \) |
| 97 | \( 1 + (0.707 + 0.707i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.578295210012615520072390020371, −7.79483356378443755599594605250, −7.51543328414920415679054480214, −6.50898773956875857532147537847, −6.12011491026010590008633843430, −5.11548742285944668706151601464, −3.94666967994144050975482344636, −2.94238316861300360392725392139, −1.88044472380026461251550002533, −0.857310613840104493683932138693,
0.71555231369157625272200241333, 2.50053718941235578314838234435, 3.10070752312427775977588122548, 3.97391045286354316691352943453, 4.62985694123827851750119067810, 5.64030384039491594543648555755, 6.76795646825276008721554448076, 7.49974021882900926702930034251, 8.105286206352819157397473625660, 8.767599841024583493700305401351