L(s) = 1 | + (−0.903 + 0.427i)2-s + (0.146 − 0.989i)3-s + (0.634 − 0.773i)4-s + (−0.998 − 0.0490i)5-s + (0.290 + 0.956i)6-s + (−0.242 + 0.970i)8-s + (−0.956 − 0.290i)9-s + (0.923 − 0.382i)10-s + (−0.671 − 0.740i)12-s + (−0.195 + 0.980i)15-s + (−0.195 − 0.980i)16-s + (0.289 + 1.45i)17-s + (0.989 − 0.146i)18-s + (0.207 + 0.439i)19-s + (−0.671 + 0.740i)20-s + ⋯ |
L(s) = 1 | + (−0.903 + 0.427i)2-s + (0.146 − 0.989i)3-s + (0.634 − 0.773i)4-s + (−0.998 − 0.0490i)5-s + (0.290 + 0.956i)6-s + (−0.242 + 0.970i)8-s + (−0.956 − 0.290i)9-s + (0.923 − 0.382i)10-s + (−0.671 − 0.740i)12-s + (−0.195 + 0.980i)15-s + (−0.195 − 0.980i)16-s + (0.289 + 1.45i)17-s + (0.989 − 0.146i)18-s + (0.207 + 0.439i)19-s + (−0.671 + 0.740i)20-s + ⋯ |
Λ(s)=(=(3840s/2ΓC(s)L(s)(0.985+0.170i)Λ(1−s)
Λ(s)=(=(3840s/2ΓC(s)L(s)(0.985+0.170i)Λ(1−s)
Degree: |
2 |
Conductor: |
3840
= 28⋅3⋅5
|
Sign: |
0.985+0.170i
|
Analytic conductor: |
1.91640 |
Root analytic conductor: |
1.38434 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3840(2309,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3840, ( :0), 0.985+0.170i)
|
Particular Values
L(21) |
≈ |
0.6604217150 |
L(21) |
≈ |
0.6604217150 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.903−0.427i)T |
| 3 | 1+(−0.146+0.989i)T |
| 5 | 1+(0.998+0.0490i)T |
good | 7 | 1+(−0.555−0.831i)T2 |
| 11 | 1+(0.471−0.881i)T2 |
| 13 | 1+(0.0980+0.995i)T2 |
| 17 | 1+(−0.289−1.45i)T+(−0.923+0.382i)T2 |
| 19 | 1+(−0.207−0.439i)T+(−0.634+0.773i)T2 |
| 23 | 1+(0.520+0.427i)T+(0.195+0.980i)T2 |
| 29 | 1+(−0.881+0.471i)T2 |
| 31 | 1+(−1.42−0.591i)T+(0.707+0.707i)T2 |
| 37 | 1+(0.773−0.634i)T2 |
| 41 | 1+(−0.980+0.195i)T2 |
| 43 | 1+(−0.956+0.290i)T2 |
| 47 | 1+(−0.661+0.990i)T+(−0.382−0.923i)T2 |
| 53 | 1+(−0.914−0.229i)T+(0.881+0.471i)T2 |
| 59 | 1+(0.0980−0.995i)T2 |
| 61 | 1+(0.612+0.825i)T+(−0.290+0.956i)T2 |
| 67 | 1+(−0.290+0.956i)T2 |
| 71 | 1+(0.831−0.555i)T2 |
| 73 | 1+(−0.555+0.831i)T2 |
| 79 | 1+(−0.324+0.216i)T+(0.382−0.923i)T2 |
| 83 | 1+(−0.644+1.80i)T+(−0.773−0.634i)T2 |
| 89 | 1+(−0.195+0.980i)T2 |
| 97 | 1+(0.707+0.707i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.578295210012615520072390020371, −7.79483356378443755599594605250, −7.51543328414920415679054480214, −6.50898773956875857532147537847, −6.12011491026010590008633843430, −5.11548742285944668706151601464, −3.94666967994144050975482344636, −2.94238316861300360392725392139, −1.88044472380026461251550002533, −0.857310613840104493683932138693,
0.71555231369157625272200241333, 2.50053718941235578314838234435, 3.10070752312427775977588122548, 3.97391045286354316691352943453, 4.62985694123827851750119067810, 5.64030384039491594543648555755, 6.76795646825276008721554448076, 7.49974021882900926702930034251, 8.105286206352819157397473625660, 8.767599841024583493700305401351