Properties

Label 2-3872-8.5-c1-0-59
Degree $2$
Conductor $3872$
Sign $-0.460 + 0.887i$
Analytic cond. $30.9180$
Root an. cond. $5.56040$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.44i·3-s − 0.200i·5-s − 2.34·7-s − 2.99·9-s + 1.63i·13-s − 0.490·15-s + 3.33·17-s − 4.92i·19-s + 5.74i·21-s + 9.25·23-s + 4.95·25-s − 0.0187i·27-s + 6.19i·29-s + 8.25·31-s + 0.470i·35-s + ⋯
L(s)  = 1  − 1.41i·3-s − 0.0896i·5-s − 0.886·7-s − 0.997·9-s + 0.452i·13-s − 0.126·15-s + 0.809·17-s − 1.12i·19-s + 1.25i·21-s + 1.92·23-s + 0.991·25-s − 0.00360i·27-s + 1.14i·29-s + 1.48·31-s + 0.0795i·35-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3872 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.460 + 0.887i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3872 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.460 + 0.887i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3872\)    =    \(2^{5} \cdot 11^{2}\)
Sign: $-0.460 + 0.887i$
Analytic conductor: \(30.9180\)
Root analytic conductor: \(5.56040\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{3872} (1937, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 3872,\ (\ :1/2),\ -0.460 + 0.887i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.735273393\)
\(L(\frac12)\) \(\approx\) \(1.735273393\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
11 \( 1 \)
good3 \( 1 + 2.44iT - 3T^{2} \)
5 \( 1 + 0.200iT - 5T^{2} \)
7 \( 1 + 2.34T + 7T^{2} \)
13 \( 1 - 1.63iT - 13T^{2} \)
17 \( 1 - 3.33T + 17T^{2} \)
19 \( 1 + 4.92iT - 19T^{2} \)
23 \( 1 - 9.25T + 23T^{2} \)
29 \( 1 - 6.19iT - 29T^{2} \)
31 \( 1 - 8.25T + 31T^{2} \)
37 \( 1 - 1.28iT - 37T^{2} \)
41 \( 1 - 6.03T + 41T^{2} \)
43 \( 1 + 2.47iT - 43T^{2} \)
47 \( 1 + 4.75T + 47T^{2} \)
53 \( 1 + 8.76iT - 53T^{2} \)
59 \( 1 + 1.90iT - 59T^{2} \)
61 \( 1 - 6.39iT - 61T^{2} \)
67 \( 1 + 8.27iT - 67T^{2} \)
71 \( 1 - 1.24T + 71T^{2} \)
73 \( 1 + 6.89T + 73T^{2} \)
79 \( 1 + 14.6T + 79T^{2} \)
83 \( 1 - 9.37iT - 83T^{2} \)
89 \( 1 - 5.11T + 89T^{2} \)
97 \( 1 - 0.299T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.199992100355681390658070289998, −7.20072061904479536738483201083, −6.88150340957450235821382834622, −6.36226811192891505175994701007, −5.34393032233311443490062718877, −4.56648536146156241677488966266, −3.15365183197612233377950750041, −2.74650799214331671168817715862, −1.43592350844067539980809300216, −0.64651758553240247448092062488, 1.01792149932073417670137532645, 2.86398880180400874648921069394, 3.21287246999243114949563357912, 4.16326052534573386235827978771, 4.84657244703713285074725600707, 5.67213612949106150729717921875, 6.32731908730038543500743171228, 7.27397437679017290417707601487, 8.121605156716974550802924286271, 8.927927460168701049133121448405

Graph of the $Z$-function along the critical line