Properties

Label 3872.2.c.i.1937.4
Level $3872$
Weight $2$
Character 3872.1937
Analytic conductor $30.918$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3872,2,Mod(1937,3872)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3872, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3872.1937");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3872 = 2^{5} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3872.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(30.9180756626\)
Analytic rank: \(0\)
Dimension: \(20\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - x^{18} - 2 x^{16} - 2 x^{15} - 4 x^{14} - 4 x^{13} + 12 x^{12} + 16 x^{11} + 32 x^{9} + \cdots + 1024 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{12} \)
Twist minimal: no (minimal twist has level 88)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1937.4
Root \(0.651763 - 1.25507i\) of defining polynomial
Character \(\chi\) \(=\) 3872.1937
Dual form 3872.2.c.i.1937.17

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.44793i q^{3} -0.200474i q^{5} -2.34615 q^{7} -2.99235 q^{9} +1.63159i q^{13} -0.490746 q^{15} +3.33639 q^{17} -4.92320i q^{19} +5.74321i q^{21} +9.25109 q^{23} +4.95981 q^{25} -0.0187332i q^{27} +6.19167i q^{29} +8.25919 q^{31} +0.470343i q^{35} +1.28006i q^{37} +3.99402 q^{39} +6.03055 q^{41} -2.47184i q^{43} +0.599888i q^{45} -4.75897 q^{47} -1.49556 q^{49} -8.16724i q^{51} -8.76165i q^{53} -12.0516 q^{57} -1.90497i q^{59} +6.39500i q^{61} +7.02051 q^{63} +0.327092 q^{65} -8.27349i q^{67} -22.6460i q^{69} +1.24836 q^{71} -6.89517 q^{73} -12.1413i q^{75} -14.6219 q^{79} -9.02290 q^{81} +9.37255i q^{83} -0.668860i q^{85} +15.1568 q^{87} +5.11129 q^{89} -3.82797i q^{91} -20.2179i q^{93} -0.986974 q^{95} +0.299741 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 10 q^{7} - 10 q^{9} + 4 q^{15} - 2 q^{17} + 4 q^{23} - 2 q^{25} - 2 q^{31} + 28 q^{39} + 2 q^{41} - 2 q^{47} - 2 q^{49} - 22 q^{57} - 30 q^{63} + 18 q^{65} + 34 q^{71} - 2 q^{73} - 58 q^{79} - 12 q^{81}+ \cdots + 10 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3872\mathbb{Z}\right)^\times\).

\(n\) \(485\) \(1695\) \(2785\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) − 2.44793i − 1.41331i −0.707558 0.706656i \(-0.750203\pi\)
0.707558 0.706656i \(-0.249797\pi\)
\(4\) 0 0
\(5\) − 0.200474i − 0.0896548i −0.998995 0.0448274i \(-0.985726\pi\)
0.998995 0.0448274i \(-0.0142738\pi\)
\(6\) 0 0
\(7\) −2.34615 −0.886763 −0.443381 0.896333i \(-0.646221\pi\)
−0.443381 + 0.896333i \(0.646221\pi\)
\(8\) 0 0
\(9\) −2.99235 −0.997449
\(10\) 0 0
\(11\) 0 0
\(12\) 0 0
\(13\) 1.63159i 0.452522i 0.974067 + 0.226261i \(0.0726503\pi\)
−0.974067 + 0.226261i \(0.927350\pi\)
\(14\) 0 0
\(15\) −0.490746 −0.126710
\(16\) 0 0
\(17\) 3.33639 0.809193 0.404597 0.914495i \(-0.367412\pi\)
0.404597 + 0.914495i \(0.367412\pi\)
\(18\) 0 0
\(19\) − 4.92320i − 1.12946i −0.825276 0.564729i \(-0.808981\pi\)
0.825276 0.564729i \(-0.191019\pi\)
\(20\) 0 0
\(21\) 5.74321i 1.25327i
\(22\) 0 0
\(23\) 9.25109 1.92899 0.964493 0.264108i \(-0.0850776\pi\)
0.964493 + 0.264108i \(0.0850776\pi\)
\(24\) 0 0
\(25\) 4.95981 0.991962
\(26\) 0 0
\(27\) − 0.0187332i − 0.00360520i
\(28\) 0 0
\(29\) 6.19167i 1.14977i 0.818236 + 0.574883i \(0.194952\pi\)
−0.818236 + 0.574883i \(0.805048\pi\)
\(30\) 0 0
\(31\) 8.25919 1.48339 0.741697 0.670735i \(-0.234021\pi\)
0.741697 + 0.670735i \(0.234021\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0.470343i 0.0795025i
\(36\) 0 0
\(37\) 1.28006i 0.210440i 0.994449 + 0.105220i \(0.0335546\pi\)
−0.994449 + 0.105220i \(0.966445\pi\)
\(38\) 0 0
\(39\) 3.99402 0.639555
\(40\) 0 0
\(41\) 6.03055 0.941814 0.470907 0.882183i \(-0.343927\pi\)
0.470907 + 0.882183i \(0.343927\pi\)
\(42\) 0 0
\(43\) − 2.47184i − 0.376952i −0.982078 0.188476i \(-0.939645\pi\)
0.982078 0.188476i \(-0.0603549\pi\)
\(44\) 0 0
\(45\) 0.599888i 0.0894261i
\(46\) 0 0
\(47\) −4.75897 −0.694167 −0.347084 0.937834i \(-0.612828\pi\)
−0.347084 + 0.937834i \(0.612828\pi\)
\(48\) 0 0
\(49\) −1.49556 −0.213652
\(50\) 0 0
\(51\) − 8.16724i − 1.14364i
\(52\) 0 0
\(53\) − 8.76165i − 1.20351i −0.798682 0.601753i \(-0.794469\pi\)
0.798682 0.601753i \(-0.205531\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −12.0516 −1.59628
\(58\) 0 0
\(59\) − 1.90497i − 0.248006i −0.992282 0.124003i \(-0.960427\pi\)
0.992282 0.124003i \(-0.0395732\pi\)
\(60\) 0 0
\(61\) 6.39500i 0.818795i 0.912356 + 0.409398i \(0.134261\pi\)
−0.912356 + 0.409398i \(0.865739\pi\)
\(62\) 0 0
\(63\) 7.02051 0.884501
\(64\) 0 0
\(65\) 0.327092 0.0405708
\(66\) 0 0
\(67\) − 8.27349i − 1.01077i −0.862895 0.505384i \(-0.831351\pi\)
0.862895 0.505384i \(-0.168649\pi\)
\(68\) 0 0
\(69\) − 22.6460i − 2.72626i
\(70\) 0 0
\(71\) 1.24836 0.148153 0.0740763 0.997253i \(-0.476399\pi\)
0.0740763 + 0.997253i \(0.476399\pi\)
\(72\) 0 0
\(73\) −6.89517 −0.807019 −0.403510 0.914975i \(-0.632210\pi\)
−0.403510 + 0.914975i \(0.632210\pi\)
\(74\) 0 0
\(75\) − 12.1413i − 1.40195i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −14.6219 −1.64509 −0.822544 0.568702i \(-0.807446\pi\)
−0.822544 + 0.568702i \(0.807446\pi\)
\(80\) 0 0
\(81\) −9.02290 −1.00254
\(82\) 0 0
\(83\) 9.37255i 1.02877i 0.857559 + 0.514386i \(0.171980\pi\)
−0.857559 + 0.514386i \(0.828020\pi\)
\(84\) 0 0
\(85\) − 0.668860i − 0.0725480i
\(86\) 0 0
\(87\) 15.1568 1.62498
\(88\) 0 0
\(89\) 5.11129 0.541795 0.270898 0.962608i \(-0.412680\pi\)
0.270898 + 0.962608i \(0.412680\pi\)
\(90\) 0 0
\(91\) − 3.82797i − 0.401280i
\(92\) 0 0
\(93\) − 20.2179i − 2.09650i
\(94\) 0 0
\(95\) −0.986974 −0.101261
\(96\) 0 0
\(97\) 0.299741 0.0304341 0.0152170 0.999884i \(-0.495156\pi\)
0.0152170 + 0.999884i \(0.495156\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) − 15.0198i − 1.49453i −0.664527 0.747265i \(-0.731367\pi\)
0.664527 0.747265i \(-0.268633\pi\)
\(102\) 0 0
\(103\) −2.82480 −0.278336 −0.139168 0.990269i \(-0.544443\pi\)
−0.139168 + 0.990269i \(0.544443\pi\)
\(104\) 0 0
\(105\) 1.15137 0.112362
\(106\) 0 0
\(107\) − 0.893354i − 0.0863638i −0.999067 0.0431819i \(-0.986250\pi\)
0.999067 0.0431819i \(-0.0137495\pi\)
\(108\) 0 0
\(109\) − 1.35318i − 0.129611i −0.997898 0.0648057i \(-0.979357\pi\)
0.997898 0.0648057i \(-0.0206428\pi\)
\(110\) 0 0
\(111\) 3.13348 0.297417
\(112\) 0 0
\(113\) −3.76875 −0.354534 −0.177267 0.984163i \(-0.556726\pi\)
−0.177267 + 0.984163i \(0.556726\pi\)
\(114\) 0 0
\(115\) − 1.85460i − 0.172943i
\(116\) 0 0
\(117\) − 4.88229i − 0.451368i
\(118\) 0 0
\(119\) −7.82768 −0.717562
\(120\) 0 0
\(121\) 0 0
\(122\) 0 0
\(123\) − 14.7624i − 1.33108i
\(124\) 0 0
\(125\) − 1.99668i − 0.178589i
\(126\) 0 0
\(127\) 7.35273 0.652450 0.326225 0.945292i \(-0.394223\pi\)
0.326225 + 0.945292i \(0.394223\pi\)
\(128\) 0 0
\(129\) −6.05089 −0.532751
\(130\) 0 0
\(131\) 6.85311i 0.598759i 0.954134 + 0.299380i \(0.0967797\pi\)
−0.954134 + 0.299380i \(0.903220\pi\)
\(132\) 0 0
\(133\) 11.5506i 1.00156i
\(134\) 0 0
\(135\) −0.00375551 −0.000323223 0
\(136\) 0 0
\(137\) 2.80303 0.239479 0.119740 0.992805i \(-0.461794\pi\)
0.119740 + 0.992805i \(0.461794\pi\)
\(138\) 0 0
\(139\) − 8.90509i − 0.755320i −0.925944 0.377660i \(-0.876729\pi\)
0.925944 0.377660i \(-0.123271\pi\)
\(140\) 0 0
\(141\) 11.6496i 0.981074i
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 1.24127 0.103082
\(146\) 0 0
\(147\) 3.66103i 0.301957i
\(148\) 0 0
\(149\) − 12.0459i − 0.986837i −0.869792 0.493418i \(-0.835747\pi\)
0.869792 0.493418i \(-0.164253\pi\)
\(150\) 0 0
\(151\) 5.29676 0.431044 0.215522 0.976499i \(-0.430855\pi\)
0.215522 + 0.976499i \(0.430855\pi\)
\(152\) 0 0
\(153\) −9.98363 −0.807129
\(154\) 0 0
\(155\) − 1.65575i − 0.132993i
\(156\) 0 0
\(157\) − 3.95049i − 0.315284i −0.987496 0.157642i \(-0.949611\pi\)
0.987496 0.157642i \(-0.0503892\pi\)
\(158\) 0 0
\(159\) −21.4479 −1.70093
\(160\) 0 0
\(161\) −21.7045 −1.71055
\(162\) 0 0
\(163\) − 16.0588i − 1.25782i −0.777477 0.628911i \(-0.783501\pi\)
0.777477 0.628911i \(-0.216499\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 9.27935 0.718057 0.359029 0.933327i \(-0.383108\pi\)
0.359029 + 0.933327i \(0.383108\pi\)
\(168\) 0 0
\(169\) 10.3379 0.795224
\(170\) 0 0
\(171\) 14.7319i 1.12658i
\(172\) 0 0
\(173\) 8.84221i 0.672261i 0.941815 + 0.336130i \(0.109118\pi\)
−0.941815 + 0.336130i \(0.890882\pi\)
\(174\) 0 0
\(175\) −11.6365 −0.879635
\(176\) 0 0
\(177\) −4.66323 −0.350510
\(178\) 0 0
\(179\) − 10.6539i − 0.796309i −0.917318 0.398154i \(-0.869651\pi\)
0.917318 0.398154i \(-0.130349\pi\)
\(180\) 0 0
\(181\) 13.4165i 0.997238i 0.866821 + 0.498619i \(0.166159\pi\)
−0.866821 + 0.498619i \(0.833841\pi\)
\(182\) 0 0
\(183\) 15.6545 1.15721
\(184\) 0 0
\(185\) 0.256618 0.0188669
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0.0439509i 0.00319696i
\(190\) 0 0
\(191\) 14.8189 1.07226 0.536129 0.844136i \(-0.319886\pi\)
0.536129 + 0.844136i \(0.319886\pi\)
\(192\) 0 0
\(193\) 4.47394 0.322041 0.161021 0.986951i \(-0.448521\pi\)
0.161021 + 0.986951i \(0.448521\pi\)
\(194\) 0 0
\(195\) − 0.800698i − 0.0573391i
\(196\) 0 0
\(197\) 20.3350i 1.44881i 0.689373 + 0.724406i \(0.257886\pi\)
−0.689373 + 0.724406i \(0.742114\pi\)
\(198\) 0 0
\(199\) −10.4142 −0.738245 −0.369122 0.929381i \(-0.620342\pi\)
−0.369122 + 0.929381i \(0.620342\pi\)
\(200\) 0 0
\(201\) −20.2529 −1.42853
\(202\) 0 0
\(203\) − 14.5266i − 1.01957i
\(204\) 0 0
\(205\) − 1.20897i − 0.0844381i
\(206\) 0 0
\(207\) −27.6825 −1.92407
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) − 18.7278i − 1.28927i −0.764489 0.644637i \(-0.777008\pi\)
0.764489 0.644637i \(-0.222992\pi\)
\(212\) 0 0
\(213\) − 3.05588i − 0.209386i
\(214\) 0 0
\(215\) −0.495541 −0.0337956
\(216\) 0 0
\(217\) −19.3773 −1.31542
\(218\) 0 0
\(219\) 16.8789i 1.14057i
\(220\) 0 0
\(221\) 5.44363i 0.366178i
\(222\) 0 0
\(223\) −14.5773 −0.976172 −0.488086 0.872796i \(-0.662305\pi\)
−0.488086 + 0.872796i \(0.662305\pi\)
\(224\) 0 0
\(225\) −14.8415 −0.989432
\(226\) 0 0
\(227\) 4.18195i 0.277566i 0.990323 + 0.138783i \(0.0443190\pi\)
−0.990323 + 0.138783i \(0.955681\pi\)
\(228\) 0 0
\(229\) − 23.2412i − 1.53582i −0.640557 0.767911i \(-0.721296\pi\)
0.640557 0.767911i \(-0.278704\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 13.9825 0.916021 0.458011 0.888947i \(-0.348562\pi\)
0.458011 + 0.888947i \(0.348562\pi\)
\(234\) 0 0
\(235\) 0.954051i 0.0622354i
\(236\) 0 0
\(237\) 35.7932i 2.32502i
\(238\) 0 0
\(239\) −23.9363 −1.54831 −0.774155 0.632996i \(-0.781825\pi\)
−0.774155 + 0.632996i \(0.781825\pi\)
\(240\) 0 0
\(241\) 26.1842 1.68667 0.843336 0.537387i \(-0.180588\pi\)
0.843336 + 0.537387i \(0.180588\pi\)
\(242\) 0 0
\(243\) 22.0312i 1.41330i
\(244\) 0 0
\(245\) 0.299822i 0.0191549i
\(246\) 0 0
\(247\) 8.03265 0.511105
\(248\) 0 0
\(249\) 22.9433 1.45397
\(250\) 0 0
\(251\) 19.2762i 1.21671i 0.793667 + 0.608353i \(0.208169\pi\)
−0.793667 + 0.608353i \(0.791831\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) −1.63732 −0.102533
\(256\) 0 0
\(257\) 7.36823 0.459618 0.229809 0.973236i \(-0.426190\pi\)
0.229809 + 0.973236i \(0.426190\pi\)
\(258\) 0 0
\(259\) − 3.00321i − 0.186610i
\(260\) 0 0
\(261\) − 18.5276i − 1.14683i
\(262\) 0 0
\(263\) 2.69244 0.166023 0.0830114 0.996549i \(-0.473546\pi\)
0.0830114 + 0.996549i \(0.473546\pi\)
\(264\) 0 0
\(265\) −1.75649 −0.107900
\(266\) 0 0
\(267\) − 12.5121i − 0.765725i
\(268\) 0 0
\(269\) − 15.5571i − 0.948532i −0.880382 0.474266i \(-0.842714\pi\)
0.880382 0.474266i \(-0.157286\pi\)
\(270\) 0 0
\(271\) −0.934048 −0.0567393 −0.0283697 0.999597i \(-0.509032\pi\)
−0.0283697 + 0.999597i \(0.509032\pi\)
\(272\) 0 0
\(273\) −9.37058 −0.567133
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) − 13.5603i − 0.814760i −0.913259 0.407380i \(-0.866442\pi\)
0.913259 0.407380i \(-0.133558\pi\)
\(278\) 0 0
\(279\) −24.7144 −1.47961
\(280\) 0 0
\(281\) 15.5472 0.927470 0.463735 0.885974i \(-0.346509\pi\)
0.463735 + 0.885974i \(0.346509\pi\)
\(282\) 0 0
\(283\) 2.34360i 0.139313i 0.997571 + 0.0696564i \(0.0221903\pi\)
−0.997571 + 0.0696564i \(0.977810\pi\)
\(284\) 0 0
\(285\) 2.41604i 0.143114i
\(286\) 0 0
\(287\) −14.1486 −0.835166
\(288\) 0 0
\(289\) −5.86851 −0.345207
\(290\) 0 0
\(291\) − 0.733744i − 0.0430129i
\(292\) 0 0
\(293\) − 18.3947i − 1.07463i −0.843381 0.537316i \(-0.819438\pi\)
0.843381 0.537316i \(-0.180562\pi\)
\(294\) 0 0
\(295\) −0.381897 −0.0222349
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 15.0940i 0.872909i
\(300\) 0 0
\(301\) 5.79932i 0.334267i
\(302\) 0 0
\(303\) −36.7675 −2.11224
\(304\) 0 0
\(305\) 1.28203 0.0734089
\(306\) 0 0
\(307\) − 20.3704i − 1.16260i −0.813690 0.581299i \(-0.802545\pi\)
0.813690 0.581299i \(-0.197455\pi\)
\(308\) 0 0
\(309\) 6.91490i 0.393375i
\(310\) 0 0
\(311\) −21.7086 −1.23098 −0.615492 0.788143i \(-0.711043\pi\)
−0.615492 + 0.788143i \(0.711043\pi\)
\(312\) 0 0
\(313\) 26.8274 1.51637 0.758186 0.652038i \(-0.226086\pi\)
0.758186 + 0.652038i \(0.226086\pi\)
\(314\) 0 0
\(315\) − 1.40743i − 0.0792997i
\(316\) 0 0
\(317\) − 3.81008i − 0.213995i −0.994259 0.106998i \(-0.965876\pi\)
0.994259 0.106998i \(-0.0341237\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) −2.18687 −0.122059
\(322\) 0 0
\(323\) − 16.4257i − 0.913950i
\(324\) 0 0
\(325\) 8.09239i 0.448885i
\(326\) 0 0
\(327\) −3.31249 −0.183181
\(328\) 0 0
\(329\) 11.1653 0.615562
\(330\) 0 0
\(331\) 28.2300i 1.55166i 0.630941 + 0.775831i \(0.282669\pi\)
−0.630941 + 0.775831i \(0.717331\pi\)
\(332\) 0 0
\(333\) − 3.83037i − 0.209903i
\(334\) 0 0
\(335\) −1.65862 −0.0906201
\(336\) 0 0
\(337\) 20.5487 1.11936 0.559678 0.828710i \(-0.310925\pi\)
0.559678 + 0.828710i \(0.310925\pi\)
\(338\) 0 0
\(339\) 9.22563i 0.501067i
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 19.9319 1.07622
\(344\) 0 0
\(345\) −4.53994 −0.244422
\(346\) 0 0
\(347\) − 3.76822i − 0.202289i −0.994872 0.101144i \(-0.967750\pi\)
0.994872 0.101144i \(-0.0322504\pi\)
\(348\) 0 0
\(349\) 31.4661i 1.68434i 0.539211 + 0.842170i \(0.318722\pi\)
−0.539211 + 0.842170i \(0.681278\pi\)
\(350\) 0 0
\(351\) 0.0305649 0.00163143
\(352\) 0 0
\(353\) −30.7625 −1.63732 −0.818662 0.574276i \(-0.805284\pi\)
−0.818662 + 0.574276i \(0.805284\pi\)
\(354\) 0 0
\(355\) − 0.250263i − 0.0132826i
\(356\) 0 0
\(357\) 19.1616i 1.01414i
\(358\) 0 0
\(359\) −12.4538 −0.657288 −0.328644 0.944454i \(-0.606592\pi\)
−0.328644 + 0.944454i \(0.606592\pi\)
\(360\) 0 0
\(361\) −5.23787 −0.275677
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 1.38230i 0.0723531i
\(366\) 0 0
\(367\) 4.64806 0.242627 0.121313 0.992614i \(-0.461289\pi\)
0.121313 + 0.992614i \(0.461289\pi\)
\(368\) 0 0
\(369\) −18.0455 −0.939412
\(370\) 0 0
\(371\) 20.5562i 1.06722i
\(372\) 0 0
\(373\) − 18.0242i − 0.933256i −0.884454 0.466628i \(-0.845469\pi\)
0.884454 0.466628i \(-0.154531\pi\)
\(374\) 0 0
\(375\) −4.88774 −0.252402
\(376\) 0 0
\(377\) −10.1023 −0.520294
\(378\) 0 0
\(379\) 13.9070i 0.714355i 0.934037 + 0.357177i \(0.116261\pi\)
−0.934037 + 0.357177i \(0.883739\pi\)
\(380\) 0 0
\(381\) − 17.9990i − 0.922114i
\(382\) 0 0
\(383\) 22.5740 1.15348 0.576739 0.816928i \(-0.304325\pi\)
0.576739 + 0.816928i \(0.304325\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 7.39661i 0.375991i
\(388\) 0 0
\(389\) − 23.4650i − 1.18972i −0.803829 0.594861i \(-0.797207\pi\)
0.803829 0.594861i \(-0.202793\pi\)
\(390\) 0 0
\(391\) 30.8652 1.56092
\(392\) 0 0
\(393\) 16.7759 0.846233
\(394\) 0 0
\(395\) 2.93130i 0.147490i
\(396\) 0 0
\(397\) − 29.9901i − 1.50516i −0.658500 0.752581i \(-0.728809\pi\)
0.658500 0.752581i \(-0.271191\pi\)
\(398\) 0 0
\(399\) 28.2750 1.41552
\(400\) 0 0
\(401\) −20.2298 −1.01023 −0.505114 0.863052i \(-0.668550\pi\)
−0.505114 + 0.863052i \(0.668550\pi\)
\(402\) 0 0
\(403\) 13.4756i 0.671269i
\(404\) 0 0
\(405\) 1.80886i 0.0898829i
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) −4.43720 −0.219405 −0.109703 0.993964i \(-0.534990\pi\)
−0.109703 + 0.993964i \(0.534990\pi\)
\(410\) 0 0
\(411\) − 6.86162i − 0.338459i
\(412\) 0 0
\(413\) 4.46935i 0.219922i
\(414\) 0 0
\(415\) 1.87895 0.0922342
\(416\) 0 0
\(417\) −21.7990 −1.06750
\(418\) 0 0
\(419\) − 6.01641i − 0.293921i −0.989142 0.146960i \(-0.953051\pi\)
0.989142 0.146960i \(-0.0469490\pi\)
\(420\) 0 0
\(421\) 27.4541i 1.33803i 0.743248 + 0.669016i \(0.233284\pi\)
−0.743248 + 0.669016i \(0.766716\pi\)
\(422\) 0 0
\(423\) 14.2405 0.692397
\(424\) 0 0
\(425\) 16.5479 0.802689
\(426\) 0 0
\(427\) − 15.0036i − 0.726077i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −24.9012 −1.19945 −0.599723 0.800207i \(-0.704723\pi\)
−0.599723 + 0.800207i \(0.704723\pi\)
\(432\) 0 0
\(433\) 13.5442 0.650892 0.325446 0.945561i \(-0.394486\pi\)
0.325446 + 0.945561i \(0.394486\pi\)
\(434\) 0 0
\(435\) − 3.03854i − 0.145687i
\(436\) 0 0
\(437\) − 45.5449i − 2.17871i
\(438\) 0 0
\(439\) −30.1967 −1.44121 −0.720606 0.693345i \(-0.756136\pi\)
−0.720606 + 0.693345i \(0.756136\pi\)
\(440\) 0 0
\(441\) 4.47525 0.213107
\(442\) 0 0
\(443\) − 13.9387i − 0.662247i −0.943587 0.331124i \(-0.892572\pi\)
0.943587 0.331124i \(-0.107428\pi\)
\(444\) 0 0
\(445\) − 1.02468i − 0.0485745i
\(446\) 0 0
\(447\) −29.4874 −1.39471
\(448\) 0 0
\(449\) 7.05742 0.333060 0.166530 0.986036i \(-0.446744\pi\)
0.166530 + 0.986036i \(0.446744\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) − 12.9661i − 0.609200i
\(454\) 0 0
\(455\) −0.767408 −0.0359767
\(456\) 0 0
\(457\) −6.26928 −0.293265 −0.146632 0.989191i \(-0.546843\pi\)
−0.146632 + 0.989191i \(0.546843\pi\)
\(458\) 0 0
\(459\) − 0.0625011i − 0.00291730i
\(460\) 0 0
\(461\) − 18.0857i − 0.842334i −0.906983 0.421167i \(-0.861621\pi\)
0.906983 0.421167i \(-0.138379\pi\)
\(462\) 0 0
\(463\) −9.95458 −0.462628 −0.231314 0.972879i \(-0.574303\pi\)
−0.231314 + 0.972879i \(0.574303\pi\)
\(464\) 0 0
\(465\) −4.05316 −0.187961
\(466\) 0 0
\(467\) − 32.6180i − 1.50938i −0.656082 0.754690i \(-0.727787\pi\)
0.656082 0.754690i \(-0.272213\pi\)
\(468\) 0 0
\(469\) 19.4109i 0.896311i
\(470\) 0 0
\(471\) −9.67052 −0.445594
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) − 24.4181i − 1.12038i
\(476\) 0 0
\(477\) 26.2179i 1.20044i
\(478\) 0 0
\(479\) 8.51155 0.388903 0.194451 0.980912i \(-0.437707\pi\)
0.194451 + 0.980912i \(0.437707\pi\)
\(480\) 0 0
\(481\) −2.08853 −0.0952287
\(482\) 0 0
\(483\) 53.1310i 2.41754i
\(484\) 0 0
\(485\) − 0.0600903i − 0.00272856i
\(486\) 0 0
\(487\) −7.13504 −0.323319 −0.161660 0.986847i \(-0.551685\pi\)
−0.161660 + 0.986847i \(0.551685\pi\)
\(488\) 0 0
\(489\) −39.3108 −1.77770
\(490\) 0 0
\(491\) 12.1001i 0.546069i 0.962004 + 0.273035i \(0.0880274\pi\)
−0.962004 + 0.273035i \(0.911973\pi\)
\(492\) 0 0
\(493\) 20.6578i 0.930382i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −2.92883 −0.131376
\(498\) 0 0
\(499\) 14.0553i 0.629200i 0.949224 + 0.314600i \(0.101870\pi\)
−0.949224 + 0.314600i \(0.898130\pi\)
\(500\) 0 0
\(501\) − 22.7152i − 1.01484i
\(502\) 0 0
\(503\) −27.5369 −1.22781 −0.613906 0.789379i \(-0.710403\pi\)
−0.613906 + 0.789379i \(0.710403\pi\)
\(504\) 0 0
\(505\) −3.01109 −0.133992
\(506\) 0 0
\(507\) − 25.3064i − 1.12390i
\(508\) 0 0
\(509\) − 0.301098i − 0.0133459i −0.999978 0.00667297i \(-0.997876\pi\)
0.999978 0.00667297i \(-0.00212409\pi\)
\(510\) 0 0
\(511\) 16.1771 0.715634
\(512\) 0 0
\(513\) −0.0922270 −0.00407192
\(514\) 0 0
\(515\) 0.566299i 0.0249541i
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 21.6451 0.950114
\(520\) 0 0
\(521\) −16.6902 −0.731210 −0.365605 0.930770i \(-0.619138\pi\)
−0.365605 + 0.930770i \(0.619138\pi\)
\(522\) 0 0
\(523\) − 5.73532i − 0.250788i −0.992107 0.125394i \(-0.959981\pi\)
0.992107 0.125394i \(-0.0400195\pi\)
\(524\) 0 0
\(525\) 28.4852i 1.24320i
\(526\) 0 0
\(527\) 27.5559 1.20035
\(528\) 0 0
\(529\) 62.5827 2.72099
\(530\) 0 0
\(531\) 5.70033i 0.247373i
\(532\) 0 0
\(533\) 9.83940i 0.426192i
\(534\) 0 0
\(535\) −0.179094 −0.00774293
\(536\) 0 0
\(537\) −26.0799 −1.12543
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 24.1196i 1.03698i 0.855083 + 0.518491i \(0.173506\pi\)
−0.855083 + 0.518491i \(0.826494\pi\)
\(542\) 0 0
\(543\) 32.8425 1.40941
\(544\) 0 0
\(545\) −0.271278 −0.0116203
\(546\) 0 0
\(547\) 7.39628i 0.316242i 0.987420 + 0.158121i \(0.0505436\pi\)
−0.987420 + 0.158121i \(0.949456\pi\)
\(548\) 0 0
\(549\) − 19.1360i − 0.816707i
\(550\) 0 0
\(551\) 30.4828 1.29861
\(552\) 0 0
\(553\) 34.3051 1.45880
\(554\) 0 0
\(555\) − 0.628182i − 0.0266648i
\(556\) 0 0
\(557\) − 11.4190i − 0.483839i −0.970296 0.241920i \(-0.922223\pi\)
0.970296 0.241920i \(-0.0777770\pi\)
\(558\) 0 0
\(559\) 4.03304 0.170579
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 9.71580i 0.409472i 0.978817 + 0.204736i \(0.0656336\pi\)
−0.978817 + 0.204736i \(0.934366\pi\)
\(564\) 0 0
\(565\) 0.755537i 0.0317857i
\(566\) 0 0
\(567\) 21.1691 0.889019
\(568\) 0 0
\(569\) 24.1045 1.01051 0.505257 0.862969i \(-0.331398\pi\)
0.505257 + 0.862969i \(0.331398\pi\)
\(570\) 0 0
\(571\) − 12.8180i − 0.536415i −0.963361 0.268207i \(-0.913569\pi\)
0.963361 0.268207i \(-0.0864312\pi\)
\(572\) 0 0
\(573\) − 36.2756i − 1.51543i
\(574\) 0 0
\(575\) 45.8837 1.91348
\(576\) 0 0
\(577\) 22.8507 0.951288 0.475644 0.879638i \(-0.342215\pi\)
0.475644 + 0.879638i \(0.342215\pi\)
\(578\) 0 0
\(579\) − 10.9519i − 0.455145i
\(580\) 0 0
\(581\) − 21.9894i − 0.912276i
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) −0.978773 −0.0404673
\(586\) 0 0
\(587\) 29.3027i 1.20945i 0.796433 + 0.604726i \(0.206717\pi\)
−0.796433 + 0.604726i \(0.793283\pi\)
\(588\) 0 0
\(589\) − 40.6616i − 1.67543i
\(590\) 0 0
\(591\) 49.7787 2.04762
\(592\) 0 0
\(593\) −10.3694 −0.425820 −0.212910 0.977072i \(-0.568294\pi\)
−0.212910 + 0.977072i \(0.568294\pi\)
\(594\) 0 0
\(595\) 1.56925i 0.0643329i
\(596\) 0 0
\(597\) 25.4933i 1.04337i
\(598\) 0 0
\(599\) 20.8591 0.852279 0.426140 0.904657i \(-0.359873\pi\)
0.426140 + 0.904657i \(0.359873\pi\)
\(600\) 0 0
\(601\) −39.2013 −1.59906 −0.799528 0.600629i \(-0.794917\pi\)
−0.799528 + 0.600629i \(0.794917\pi\)
\(602\) 0 0
\(603\) 24.7571i 1.00819i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −26.6834 −1.08305 −0.541523 0.840686i \(-0.682152\pi\)
−0.541523 + 0.840686i \(0.682152\pi\)
\(608\) 0 0
\(609\) −35.5601 −1.44097
\(610\) 0 0
\(611\) − 7.76470i − 0.314126i
\(612\) 0 0
\(613\) − 30.7684i − 1.24272i −0.783523 0.621362i \(-0.786580\pi\)
0.783523 0.621362i \(-0.213420\pi\)
\(614\) 0 0
\(615\) −2.95947 −0.119337
\(616\) 0 0
\(617\) 10.0183 0.403323 0.201662 0.979455i \(-0.435366\pi\)
0.201662 + 0.979455i \(0.435366\pi\)
\(618\) 0 0
\(619\) 32.0971i 1.29009i 0.764144 + 0.645046i \(0.223162\pi\)
−0.764144 + 0.645046i \(0.776838\pi\)
\(620\) 0 0
\(621\) − 0.173302i − 0.00695438i
\(622\) 0 0
\(623\) −11.9919 −0.480444
\(624\) 0 0
\(625\) 24.3988 0.975951
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 4.27076i 0.170286i
\(630\) 0 0
\(631\) 2.80016 0.111472 0.0557362 0.998446i \(-0.482249\pi\)
0.0557362 + 0.998446i \(0.482249\pi\)
\(632\) 0 0
\(633\) −45.8443 −1.82215
\(634\) 0 0
\(635\) − 1.47403i − 0.0584952i
\(636\) 0 0
\(637\) − 2.44015i − 0.0966823i
\(638\) 0 0
\(639\) −3.73551 −0.147775
\(640\) 0 0
\(641\) 16.8783 0.666652 0.333326 0.942812i \(-0.391829\pi\)
0.333326 + 0.942812i \(0.391829\pi\)
\(642\) 0 0
\(643\) 49.0739i 1.93528i 0.252326 + 0.967642i \(0.418804\pi\)
−0.252326 + 0.967642i \(0.581196\pi\)
\(644\) 0 0
\(645\) 1.21305i 0.0477637i
\(646\) 0 0
\(647\) 35.3413 1.38941 0.694705 0.719295i \(-0.255535\pi\)
0.694705 + 0.719295i \(0.255535\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 47.4343i 1.85910i
\(652\) 0 0
\(653\) 0.192213i 0.00752186i 0.999993 + 0.00376093i \(0.00119714\pi\)
−0.999993 + 0.00376093i \(0.998803\pi\)
\(654\) 0 0
\(655\) 1.37387 0.0536816
\(656\) 0 0
\(657\) 20.6328 0.804960
\(658\) 0 0
\(659\) − 46.4826i − 1.81071i −0.424660 0.905353i \(-0.639606\pi\)
0.424660 0.905353i \(-0.360394\pi\)
\(660\) 0 0
\(661\) 24.0904i 0.937007i 0.883462 + 0.468503i \(0.155207\pi\)
−0.883462 + 0.468503i \(0.844793\pi\)
\(662\) 0 0
\(663\) 13.3256 0.517523
\(664\) 0 0
\(665\) 2.31559 0.0897948
\(666\) 0 0
\(667\) 57.2798i 2.21788i
\(668\) 0 0
\(669\) 35.6843i 1.37963i
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 7.57085 0.291835 0.145917 0.989297i \(-0.453387\pi\)
0.145917 + 0.989297i \(0.453387\pi\)
\(674\) 0 0
\(675\) − 0.0929129i − 0.00357622i
\(676\) 0 0
\(677\) − 20.6521i − 0.793725i −0.917878 0.396862i \(-0.870099\pi\)
0.917878 0.396862i \(-0.129901\pi\)
\(678\) 0 0
\(679\) −0.703239 −0.0269878
\(680\) 0 0
\(681\) 10.2371 0.392287
\(682\) 0 0
\(683\) − 14.6272i − 0.559694i −0.960045 0.279847i \(-0.909716\pi\)
0.960045 0.279847i \(-0.0902837\pi\)
\(684\) 0 0
\(685\) − 0.561935i − 0.0214704i
\(686\) 0 0
\(687\) −56.8928 −2.17059
\(688\) 0 0
\(689\) 14.2954 0.544613
\(690\) 0 0
\(691\) 22.9427i 0.872781i 0.899757 + 0.436390i \(0.143743\pi\)
−0.899757 + 0.436390i \(0.856257\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −1.78524 −0.0677181
\(696\) 0 0
\(697\) 20.1203 0.762109
\(698\) 0 0
\(699\) − 34.2280i − 1.29462i
\(700\) 0 0
\(701\) 0.700778i 0.0264680i 0.999912 + 0.0132340i \(0.00421264\pi\)
−0.999912 + 0.0132340i \(0.995787\pi\)
\(702\) 0 0
\(703\) 6.30196 0.237683
\(704\) 0 0
\(705\) 2.33545 0.0879580
\(706\) 0 0
\(707\) 35.2388i 1.32529i
\(708\) 0 0
\(709\) − 4.05276i − 0.152205i −0.997100 0.0761023i \(-0.975752\pi\)
0.997100 0.0761023i \(-0.0242476\pi\)
\(710\) 0 0
\(711\) 43.7537 1.64089
\(712\) 0 0
\(713\) 76.4065 2.86145
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 58.5943i 2.18824i
\(718\) 0 0
\(719\) −10.0908 −0.376323 −0.188161 0.982138i \(-0.560253\pi\)
−0.188161 + 0.982138i \(0.560253\pi\)
\(720\) 0 0
\(721\) 6.62741 0.246818
\(722\) 0 0
\(723\) − 64.0970i − 2.38379i
\(724\) 0 0
\(725\) 30.7095i 1.14052i
\(726\) 0 0
\(727\) 13.6615 0.506675 0.253338 0.967378i \(-0.418472\pi\)
0.253338 + 0.967378i \(0.418472\pi\)
\(728\) 0 0
\(729\) 26.8621 0.994892
\(730\) 0 0
\(731\) − 8.24703i − 0.305027i
\(732\) 0 0
\(733\) 17.9204i 0.661906i 0.943647 + 0.330953i \(0.107370\pi\)
−0.943647 + 0.330953i \(0.892630\pi\)
\(734\) 0 0
\(735\) 0.733942 0.0270719
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 23.5590i 0.866631i 0.901242 + 0.433316i \(0.142656\pi\)
−0.901242 + 0.433316i \(0.857344\pi\)
\(740\) 0 0
\(741\) − 19.6633i − 0.722351i
\(742\) 0 0
\(743\) −13.6295 −0.500018 −0.250009 0.968244i \(-0.580434\pi\)
−0.250009 + 0.968244i \(0.580434\pi\)
\(744\) 0 0
\(745\) −2.41489 −0.0884746
\(746\) 0 0
\(747\) − 28.0459i − 1.02615i
\(748\) 0 0
\(749\) 2.09595i 0.0765842i
\(750\) 0 0
\(751\) 12.2314 0.446331 0.223165 0.974781i \(-0.428361\pi\)
0.223165 + 0.974781i \(0.428361\pi\)
\(752\) 0 0
\(753\) 47.1868 1.71958
\(754\) 0 0
\(755\) − 1.06186i − 0.0386452i
\(756\) 0 0
\(757\) − 21.3405i − 0.775634i −0.921736 0.387817i \(-0.873229\pi\)
0.921736 0.387817i \(-0.126771\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −11.8300 −0.428839 −0.214419 0.976742i \(-0.568786\pi\)
−0.214419 + 0.976742i \(0.568786\pi\)
\(762\) 0 0
\(763\) 3.17478i 0.114935i
\(764\) 0 0
\(765\) 2.00146i 0.0723629i
\(766\) 0 0
\(767\) 3.10813 0.112228
\(768\) 0 0
\(769\) −2.94327 −0.106137 −0.0530685 0.998591i \(-0.516900\pi\)
−0.0530685 + 0.998591i \(0.516900\pi\)
\(770\) 0 0
\(771\) − 18.0369i − 0.649583i
\(772\) 0 0
\(773\) − 7.95495i − 0.286120i −0.989714 0.143060i \(-0.954306\pi\)
0.989714 0.143060i \(-0.0456942\pi\)
\(774\) 0 0
\(775\) 40.9640 1.47147
\(776\) 0 0
\(777\) −7.35163 −0.263738
\(778\) 0 0
\(779\) − 29.6896i − 1.06374i
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0.115990 0.00414513
\(784\) 0 0
\(785\) −0.791972 −0.0282667
\(786\) 0 0
\(787\) − 2.72311i − 0.0970685i −0.998822 0.0485342i \(-0.984545\pi\)
0.998822 0.0485342i \(-0.0154550\pi\)
\(788\) 0 0
\(789\) − 6.59089i − 0.234642i
\(790\) 0 0
\(791\) 8.84207 0.314388
\(792\) 0 0
\(793\) −10.4340 −0.370523
\(794\) 0 0
\(795\) 4.29975i 0.152496i
\(796\) 0 0
\(797\) 28.0588i 0.993893i 0.867781 + 0.496947i \(0.165546\pi\)
−0.867781 + 0.496947i \(0.834454\pi\)
\(798\) 0 0
\(799\) −15.8778 −0.561715
\(800\) 0 0
\(801\) −15.2947 −0.540413
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 4.35119i 0.153359i
\(806\) 0 0
\(807\) −38.0826 −1.34057
\(808\) 0 0
\(809\) 32.5279 1.14362 0.571810 0.820386i \(-0.306242\pi\)
0.571810 + 0.820386i \(0.306242\pi\)
\(810\) 0 0
\(811\) 8.90533i 0.312708i 0.987701 + 0.156354i \(0.0499741\pi\)
−0.987701 + 0.156354i \(0.950026\pi\)
\(812\) 0 0
\(813\) 2.28648i 0.0801904i
\(814\) 0 0
\(815\) −3.21938 −0.112770
\(816\) 0 0
\(817\) −12.1694 −0.425752
\(818\) 0 0
\(819\) 11.4546i 0.400256i
\(820\) 0 0
\(821\) 14.3875i 0.502126i 0.967971 + 0.251063i \(0.0807801\pi\)
−0.967971 + 0.251063i \(0.919220\pi\)
\(822\) 0 0
\(823\) 35.3163 1.23105 0.615525 0.788117i \(-0.288944\pi\)
0.615525 + 0.788117i \(0.288944\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 12.8333i 0.446257i 0.974789 + 0.223129i \(0.0716270\pi\)
−0.974789 + 0.223129i \(0.928373\pi\)
\(828\) 0 0
\(829\) 23.8928i 0.829831i 0.909860 + 0.414916i \(0.136189\pi\)
−0.909860 + 0.414916i \(0.863811\pi\)
\(830\) 0 0
\(831\) −33.1947 −1.15151
\(832\) 0 0
\(833\) −4.98978 −0.172886
\(834\) 0 0
\(835\) − 1.86027i − 0.0643773i
\(836\) 0 0
\(837\) − 0.154721i − 0.00534793i
\(838\) 0 0
\(839\) −23.6213 −0.815497 −0.407748 0.913094i \(-0.633686\pi\)
−0.407748 + 0.913094i \(0.633686\pi\)
\(840\) 0 0
\(841\) −9.33683 −0.321960
\(842\) 0 0
\(843\) − 38.0585i − 1.31080i
\(844\) 0 0
\(845\) − 2.07248i − 0.0712956i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 5.73697 0.196892
\(850\) 0 0
\(851\) 11.8419i 0.405935i
\(852\) 0 0
\(853\) 41.7017i 1.42784i 0.700228 + 0.713919i \(0.253082\pi\)
−0.700228 + 0.713919i \(0.746918\pi\)
\(854\) 0 0
\(855\) 2.95337 0.101003
\(856\) 0 0
\(857\) 4.35256 0.148680 0.0743402 0.997233i \(-0.476315\pi\)
0.0743402 + 0.997233i \(0.476315\pi\)
\(858\) 0 0
\(859\) − 7.91648i − 0.270107i −0.990838 0.135053i \(-0.956879\pi\)
0.990838 0.135053i \(-0.0431206\pi\)
\(860\) 0 0
\(861\) 34.6347i 1.18035i
\(862\) 0 0
\(863\) 12.3382 0.419996 0.209998 0.977702i \(-0.432654\pi\)
0.209998 + 0.977702i \(0.432654\pi\)
\(864\) 0 0
\(865\) 1.77263 0.0602714
\(866\) 0 0
\(867\) 14.3657i 0.487884i
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 13.4990 0.457395
\(872\) 0 0
\(873\) −0.896929 −0.0303565
\(874\) 0 0
\(875\) 4.68453i 0.158366i
\(876\) 0 0
\(877\) 58.3261i 1.96953i 0.173887 + 0.984766i \(0.444367\pi\)
−0.173887 + 0.984766i \(0.555633\pi\)
\(878\) 0 0
\(879\) −45.0289 −1.51879
\(880\) 0 0
\(881\) −25.8106 −0.869581 −0.434791 0.900532i \(-0.643178\pi\)
−0.434791 + 0.900532i \(0.643178\pi\)
\(882\) 0 0
\(883\) − 36.6024i − 1.23177i −0.787836 0.615885i \(-0.788799\pi\)
0.787836 0.615885i \(-0.211201\pi\)
\(884\) 0 0
\(885\) 0.934857i 0.0314249i
\(886\) 0 0
\(887\) 21.8922 0.735067 0.367534 0.930010i \(-0.380202\pi\)
0.367534 + 0.930010i \(0.380202\pi\)
\(888\) 0 0
\(889\) −17.2506 −0.578568
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 23.4294i 0.784033i
\(894\) 0 0
\(895\) −2.13583 −0.0713929
\(896\) 0 0
\(897\) 36.9490 1.23369
\(898\) 0 0
\(899\) 51.1382i 1.70555i
\(900\) 0 0
\(901\) − 29.2323i − 0.973869i
\(902\) 0 0
\(903\) 14.1963 0.472424
\(904\) 0 0
\(905\) 2.68965 0.0894071
\(906\) 0 0
\(907\) 28.8065i 0.956503i 0.878223 + 0.478252i \(0.158729\pi\)
−0.878223 + 0.478252i \(0.841271\pi\)
\(908\) 0 0
\(909\) 44.9446i 1.49072i
\(910\) 0 0
\(911\) −44.2181 −1.46501 −0.732506 0.680760i \(-0.761649\pi\)
−0.732506 + 0.680760i \(0.761649\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) − 3.13832i − 0.103750i
\(916\) 0 0
\(917\) − 16.0785i − 0.530957i
\(918\) 0 0
\(919\) −18.9997 −0.626743 −0.313372 0.949631i \(-0.601459\pi\)
−0.313372 + 0.949631i \(0.601459\pi\)
\(920\) 0 0
\(921\) −49.8652 −1.64311
\(922\) 0 0
\(923\) 2.03681i 0.0670423i
\(924\) 0 0
\(925\) 6.34883i 0.208748i
\(926\) 0 0
\(927\) 8.45277 0.277626
\(928\) 0 0
\(929\) 28.0670 0.920850 0.460425 0.887699i \(-0.347697\pi\)
0.460425 + 0.887699i \(0.347697\pi\)
\(930\) 0 0
\(931\) 7.36295i 0.241311i
\(932\) 0 0
\(933\) 53.1411i 1.73976i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −0.293629 −0.00959245 −0.00479623 0.999988i \(-0.501527\pi\)
−0.00479623 + 0.999988i \(0.501527\pi\)
\(938\) 0 0
\(939\) − 65.6715i − 2.14311i
\(940\) 0 0
\(941\) − 16.1292i − 0.525797i −0.964823 0.262899i \(-0.915322\pi\)
0.964823 0.262899i \(-0.0846785\pi\)
\(942\) 0 0
\(943\) 55.7892 1.81675
\(944\) 0 0
\(945\) 0.00881101 0.000286622 0
\(946\) 0 0
\(947\) − 29.0812i − 0.945011i −0.881328 0.472505i \(-0.843350\pi\)
0.881328 0.472505i \(-0.156650\pi\)
\(948\) 0 0
\(949\) − 11.2501i − 0.365194i
\(950\) 0 0
\(951\) −9.32680 −0.302442
\(952\) 0 0
\(953\) −40.5658 −1.31405 −0.657027 0.753867i \(-0.728186\pi\)
−0.657027 + 0.753867i \(0.728186\pi\)
\(954\) 0 0
\(955\) − 2.97081i − 0.0961330i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −6.57634 −0.212361
\(960\) 0 0
\(961\) 37.2141 1.20046
\(962\) 0 0
\(963\) 2.67323i 0.0861435i
\(964\) 0 0
\(965\) − 0.896909i − 0.0288725i
\(966\) 0 0
\(967\) 6.42732 0.206689 0.103344 0.994646i \(-0.467046\pi\)
0.103344 + 0.994646i \(0.467046\pi\)
\(968\) 0 0
\(969\) −40.2089 −1.29170
\(970\) 0 0
\(971\) 50.7088i 1.62732i 0.581338 + 0.813662i \(0.302529\pi\)
−0.581338 + 0.813662i \(0.697471\pi\)
\(972\) 0 0
\(973\) 20.8927i 0.669790i
\(974\) 0 0
\(975\) 19.8096 0.634414
\(976\) 0 0
\(977\) −0.100545 −0.00321673 −0.00160837 0.999999i \(-0.500512\pi\)
−0.00160837 + 0.999999i \(0.500512\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 4.04919i 0.129281i
\(982\) 0 0
\(983\) −26.3392 −0.840091 −0.420046 0.907503i \(-0.637986\pi\)
−0.420046 + 0.907503i \(0.637986\pi\)
\(984\) 0 0
\(985\) 4.07665 0.129893
\(986\) 0 0
\(987\) − 27.3318i − 0.869980i
\(988\) 0 0
\(989\) − 22.8672i − 0.727136i
\(990\) 0 0
\(991\) 27.9640 0.888306 0.444153 0.895951i \(-0.353505\pi\)
0.444153 + 0.895951i \(0.353505\pi\)
\(992\) 0 0
\(993\) 69.1050 2.19298
\(994\) 0 0
\(995\) 2.08778i 0.0661871i
\(996\) 0 0
\(997\) 57.2928i 1.81448i 0.420612 + 0.907241i \(0.361815\pi\)
−0.420612 + 0.907241i \(0.638185\pi\)
\(998\) 0 0
\(999\) 0.0239795 0.000758677 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3872.2.c.i.1937.4 20
4.3 odd 2 968.2.c.i.485.8 20
8.3 odd 2 968.2.c.i.485.7 20
8.5 even 2 inner 3872.2.c.i.1937.17 20
11.2 odd 10 352.2.w.a.81.2 40
11.6 odd 10 352.2.w.a.113.9 40
11.10 odd 2 3872.2.c.h.1937.4 20
44.3 odd 10 968.2.o.d.493.9 40
44.7 even 10 968.2.o.j.269.10 40
44.15 odd 10 968.2.o.d.269.1 40
44.19 even 10 968.2.o.j.493.2 40
44.27 odd 10 968.2.o.i.245.4 40
44.31 odd 10 968.2.o.i.565.9 40
44.35 even 10 88.2.o.a.37.2 40
44.39 even 10 88.2.o.a.69.7 yes 40
44.43 even 2 968.2.c.h.485.13 20
88.3 odd 10 968.2.o.d.493.1 40
88.13 odd 10 352.2.w.a.81.9 40
88.19 even 10 968.2.o.j.493.10 40
88.21 odd 2 3872.2.c.h.1937.17 20
88.27 odd 10 968.2.o.i.245.9 40
88.35 even 10 88.2.o.a.37.7 yes 40
88.43 even 2 968.2.c.h.485.14 20
88.51 even 10 968.2.o.j.269.2 40
88.59 odd 10 968.2.o.d.269.9 40
88.61 odd 10 352.2.w.a.113.2 40
88.75 odd 10 968.2.o.i.565.4 40
88.83 even 10 88.2.o.a.69.2 yes 40
132.35 odd 10 792.2.br.b.37.9 40
132.83 odd 10 792.2.br.b.685.4 40
264.35 odd 10 792.2.br.b.37.4 40
264.83 odd 10 792.2.br.b.685.9 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
88.2.o.a.37.2 40 44.35 even 10
88.2.o.a.37.7 yes 40 88.35 even 10
88.2.o.a.69.2 yes 40 88.83 even 10
88.2.o.a.69.7 yes 40 44.39 even 10
352.2.w.a.81.2 40 11.2 odd 10
352.2.w.a.81.9 40 88.13 odd 10
352.2.w.a.113.2 40 88.61 odd 10
352.2.w.a.113.9 40 11.6 odd 10
792.2.br.b.37.4 40 264.35 odd 10
792.2.br.b.37.9 40 132.35 odd 10
792.2.br.b.685.4 40 132.83 odd 10
792.2.br.b.685.9 40 264.83 odd 10
968.2.c.h.485.13 20 44.43 even 2
968.2.c.h.485.14 20 88.43 even 2
968.2.c.i.485.7 20 8.3 odd 2
968.2.c.i.485.8 20 4.3 odd 2
968.2.o.d.269.1 40 44.15 odd 10
968.2.o.d.269.9 40 88.59 odd 10
968.2.o.d.493.1 40 88.3 odd 10
968.2.o.d.493.9 40 44.3 odd 10
968.2.o.i.245.4 40 44.27 odd 10
968.2.o.i.245.9 40 88.27 odd 10
968.2.o.i.565.4 40 88.75 odd 10
968.2.o.i.565.9 40 44.31 odd 10
968.2.o.j.269.2 40 88.51 even 10
968.2.o.j.269.10 40 44.7 even 10
968.2.o.j.493.2 40 44.19 even 10
968.2.o.j.493.10 40 88.19 even 10
3872.2.c.h.1937.4 20 11.10 odd 2
3872.2.c.h.1937.17 20 88.21 odd 2
3872.2.c.i.1937.4 20 1.1 even 1 trivial
3872.2.c.i.1937.17 20 8.5 even 2 inner