Properties

Label 968.2.c.h.485.14
Level $968$
Weight $2$
Character 968.485
Analytic conductor $7.730$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [968,2,Mod(485,968)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(968, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("968.485");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 968 = 2^{3} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 968.c (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.72951891566\)
Analytic rank: \(0\)
Dimension: \(20\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - x^{18} - 2 x^{16} - 2 x^{15} - 4 x^{14} - 4 x^{13} + 12 x^{12} + 16 x^{11} + 32 x^{9} + \cdots + 1024 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: no (minimal twist has level 88)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 485.14
Root \(0.651763 - 1.25507i\) of defining polynomial
Character \(\chi\) \(=\) 968.485
Dual form 968.2.c.h.485.13

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.651763 + 1.25507i) q^{2} -2.44793i q^{3} +(-1.15041 + 1.63602i) q^{4} +0.200474i q^{5} +(3.07232 - 1.59547i) q^{6} -2.34615 q^{7} +(-2.80312 - 0.377551i) q^{8} -2.99235 q^{9} +(-0.251609 + 0.130662i) q^{10} +(4.00485 + 2.81612i) q^{12} +1.63159i q^{13} +(-1.52914 - 2.94459i) q^{14} +0.490746 q^{15} +(-1.35311 - 3.76418i) q^{16} -3.33639 q^{17} +(-1.95030 - 3.75561i) q^{18} +4.92320i q^{19} +(-0.327979 - 0.230627i) q^{20} +5.74321i q^{21} -9.25109 q^{23} +(-0.924218 + 6.86182i) q^{24} +4.95981 q^{25} +(-2.04777 + 1.06341i) q^{26} -0.0187332i q^{27} +(2.69904 - 3.83835i) q^{28} +6.19167i q^{29} +(0.319850 + 0.615922i) q^{30} -8.25919 q^{31} +(3.84241 - 4.15161i) q^{32} +(-2.17453 - 4.18741i) q^{34} -0.470343i q^{35} +(3.44243 - 4.89554i) q^{36} -1.28006i q^{37} +(-6.17897 + 3.20876i) q^{38} +3.99402 q^{39} +(0.0756893 - 0.561952i) q^{40} -6.03055 q^{41} +(-7.20814 + 3.74321i) q^{42} +2.47184i q^{43} -0.599888i q^{45} +(-6.02952 - 11.6108i) q^{46} +4.75897 q^{47} +(-9.21445 + 3.31232i) q^{48} -1.49556 q^{49} +(3.23262 + 6.22492i) q^{50} +8.16724i q^{51} +(-2.66932 - 1.87700i) q^{52} +8.76165i q^{53} +(0.0235115 - 0.0122096i) q^{54} +(6.57654 + 0.885793i) q^{56} +12.0516 q^{57} +(-7.77100 + 4.03550i) q^{58} -1.90497i q^{59} +(-0.564559 + 0.802870i) q^{60} +6.39500i q^{61} +(-5.38303 - 10.3659i) q^{62} +7.02051 q^{63} +(7.71491 + 2.11664i) q^{64} -0.327092 q^{65} -8.27349i q^{67} +(3.83822 - 5.45839i) q^{68} +22.6460i q^{69} +(0.590314 - 0.306552i) q^{70} -1.24836 q^{71} +(8.38789 + 1.12976i) q^{72} +6.89517 q^{73} +(1.60656 - 0.834293i) q^{74} -12.1413i q^{75} +(-8.05444 - 5.66370i) q^{76} +(2.60315 + 5.01278i) q^{78} -14.6219 q^{79} +(0.754622 - 0.271264i) q^{80} -9.02290 q^{81} +(-3.93049 - 7.56878i) q^{82} -9.37255i q^{83} +(-9.39600 - 6.60705i) q^{84} -0.668860i q^{85} +(-3.10234 + 1.61106i) q^{86} +15.1568 q^{87} +5.11129 q^{89} +(0.752903 - 0.390985i) q^{90} -3.82797i q^{91} +(10.6426 - 15.1350i) q^{92} +20.2179i q^{93} +(3.10172 + 5.97285i) q^{94} -0.986974 q^{95} +(-10.1628 - 9.40595i) q^{96} +0.299741 q^{97} +(-0.974753 - 1.87704i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 2 q^{4} - q^{6} + 10 q^{7} - 10 q^{9} - 10 q^{10} - 3 q^{12} - 4 q^{14} - 4 q^{15} + 10 q^{16} + 2 q^{17} - 5 q^{18} - 16 q^{20} - 4 q^{23} + 15 q^{24} - 2 q^{25} + 30 q^{26} - 14 q^{28} + 16 q^{30}+ \cdots - 72 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/968\mathbb{Z}\right)^\times\).

\(n\) \(485\) \(727\) \(849\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.651763 + 1.25507i 0.460866 + 0.887470i
\(3\) 2.44793i 1.41331i −0.707558 0.706656i \(-0.750203\pi\)
0.707558 0.706656i \(-0.249797\pi\)
\(4\) −1.15041 + 1.63602i −0.575205 + 0.818009i
\(5\) 0.200474i 0.0896548i 0.998995 + 0.0448274i \(0.0142738\pi\)
−0.998995 + 0.0448274i \(0.985726\pi\)
\(6\) 3.07232 1.59547i 1.25427 0.651347i
\(7\) −2.34615 −0.886763 −0.443381 0.896333i \(-0.646221\pi\)
−0.443381 + 0.896333i \(0.646221\pi\)
\(8\) −2.80312 0.377551i −0.991051 0.133485i
\(9\) −2.99235 −0.997449
\(10\) −0.251609 + 0.130662i −0.0795659 + 0.0413188i
\(11\) 0 0
\(12\) 4.00485 + 2.81612i 1.15610 + 0.812944i
\(13\) 1.63159i 0.452522i 0.974067 + 0.226261i \(0.0726503\pi\)
−0.974067 + 0.226261i \(0.927350\pi\)
\(14\) −1.52914 2.94459i −0.408679 0.786975i
\(15\) 0.490746 0.126710
\(16\) −1.35311 3.76418i −0.338278 0.941046i
\(17\) −3.33639 −0.809193 −0.404597 0.914495i \(-0.632588\pi\)
−0.404597 + 0.914495i \(0.632588\pi\)
\(18\) −1.95030 3.75561i −0.459690 0.885206i
\(19\) 4.92320i 1.12946i 0.825276 + 0.564729i \(0.191019\pi\)
−0.825276 + 0.564729i \(0.808981\pi\)
\(20\) −0.327979 0.230627i −0.0733384 0.0515699i
\(21\) 5.74321i 1.25327i
\(22\) 0 0
\(23\) −9.25109 −1.92899 −0.964493 0.264108i \(-0.914922\pi\)
−0.964493 + 0.264108i \(0.914922\pi\)
\(24\) −0.924218 + 6.86182i −0.188655 + 1.40066i
\(25\) 4.95981 0.991962
\(26\) −2.04777 + 1.06341i −0.401600 + 0.208552i
\(27\) 0.0187332i 0.00360520i
\(28\) 2.69904 3.83835i 0.510070 0.725380i
\(29\) 6.19167i 1.14977i 0.818236 + 0.574883i \(0.194952\pi\)
−0.818236 + 0.574883i \(0.805048\pi\)
\(30\) 0.319850 + 0.615922i 0.0583964 + 0.112451i
\(31\) −8.25919 −1.48339 −0.741697 0.670735i \(-0.765979\pi\)
−0.741697 + 0.670735i \(0.765979\pi\)
\(32\) 3.84241 4.15161i 0.679249 0.733908i
\(33\) 0 0
\(34\) −2.17453 4.18741i −0.372930 0.718134i
\(35\) 0.470343i 0.0795025i
\(36\) 3.44243 4.89554i 0.573738 0.815923i
\(37\) 1.28006i 0.210440i −0.994449 0.105220i \(-0.966445\pi\)
0.994449 0.105220i \(-0.0335546\pi\)
\(38\) −6.17897 + 3.20876i −1.00236 + 0.520529i
\(39\) 3.99402 0.639555
\(40\) 0.0756893 0.561952i 0.0119675 0.0888524i
\(41\) −6.03055 −0.941814 −0.470907 0.882183i \(-0.656073\pi\)
−0.470907 + 0.882183i \(0.656073\pi\)
\(42\) −7.20814 + 3.74321i −1.11224 + 0.577590i
\(43\) 2.47184i 0.376952i 0.982078 + 0.188476i \(0.0603549\pi\)
−0.982078 + 0.188476i \(0.939645\pi\)
\(44\) 0 0
\(45\) 0.599888i 0.0894261i
\(46\) −6.02952 11.6108i −0.889004 1.71192i
\(47\) 4.75897 0.694167 0.347084 0.937834i \(-0.387172\pi\)
0.347084 + 0.937834i \(0.387172\pi\)
\(48\) −9.21445 + 3.31232i −1.32999 + 0.478092i
\(49\) −1.49556 −0.213652
\(50\) 3.23262 + 6.22492i 0.457162 + 0.880336i
\(51\) 8.16724i 1.14364i
\(52\) −2.66932 1.87700i −0.370167 0.260293i
\(53\) 8.76165i 1.20351i 0.798682 + 0.601753i \(0.205531\pi\)
−0.798682 + 0.601753i \(0.794469\pi\)
\(54\) 0.0235115 0.0122096i 0.00319950 0.00166151i
\(55\) 0 0
\(56\) 6.57654 + 0.885793i 0.878827 + 0.118369i
\(57\) 12.0516 1.59628
\(58\) −7.77100 + 4.03550i −1.02038 + 0.529888i
\(59\) 1.90497i 0.248006i −0.992282 0.124003i \(-0.960427\pi\)
0.992282 0.124003i \(-0.0395732\pi\)
\(60\) −0.564559 + 0.802870i −0.0728843 + 0.103650i
\(61\) 6.39500i 0.818795i 0.912356 + 0.409398i \(0.134261\pi\)
−0.912356 + 0.409398i \(0.865739\pi\)
\(62\) −5.38303 10.3659i −0.683646 1.31647i
\(63\) 7.02051 0.884501
\(64\) 7.71491 + 2.11664i 0.964364 + 0.264580i
\(65\) −0.327092 −0.0405708
\(66\) 0 0
\(67\) 8.27349i 1.01077i −0.862895 0.505384i \(-0.831351\pi\)
0.862895 0.505384i \(-0.168649\pi\)
\(68\) 3.83822 5.45839i 0.465452 0.661927i
\(69\) 22.6460i 2.72626i
\(70\) 0.590314 0.306552i 0.0705561 0.0366400i
\(71\) −1.24836 −0.148153 −0.0740763 0.997253i \(-0.523601\pi\)
−0.0740763 + 0.997253i \(0.523601\pi\)
\(72\) 8.38789 + 1.12976i 0.988523 + 0.133144i
\(73\) 6.89517 0.807019 0.403510 0.914975i \(-0.367790\pi\)
0.403510 + 0.914975i \(0.367790\pi\)
\(74\) 1.60656 0.834293i 0.186759 0.0969845i
\(75\) 12.1413i 1.40195i
\(76\) −8.05444 5.66370i −0.923908 0.649670i
\(77\) 0 0
\(78\) 2.60315 + 5.01278i 0.294749 + 0.567586i
\(79\) −14.6219 −1.64509 −0.822544 0.568702i \(-0.807446\pi\)
−0.822544 + 0.568702i \(0.807446\pi\)
\(80\) 0.754622 0.271264i 0.0843693 0.0303282i
\(81\) −9.02290 −1.00254
\(82\) −3.93049 7.56878i −0.434050 0.835831i
\(83\) 9.37255i 1.02877i −0.857559 0.514386i \(-0.828020\pi\)
0.857559 0.514386i \(-0.171980\pi\)
\(84\) −9.39600 6.60705i −1.02519 0.720888i
\(85\) 0.668860i 0.0725480i
\(86\) −3.10234 + 1.61106i −0.334534 + 0.173725i
\(87\) 15.1568 1.62498
\(88\) 0 0
\(89\) 5.11129 0.541795 0.270898 0.962608i \(-0.412680\pi\)
0.270898 + 0.962608i \(0.412680\pi\)
\(90\) 0.752903 0.390985i 0.0793629 0.0412134i
\(91\) 3.82797i 0.401280i
\(92\) 10.6426 15.1350i 1.10956 1.57793i
\(93\) 20.2179i 2.09650i
\(94\) 3.10172 + 5.97285i 0.319918 + 0.616052i
\(95\) −0.986974 −0.101261
\(96\) −10.1628 9.40595i −1.03724 0.959991i
\(97\) 0.299741 0.0304341 0.0152170 0.999884i \(-0.495156\pi\)
0.0152170 + 0.999884i \(0.495156\pi\)
\(98\) −0.974753 1.87704i −0.0984649 0.189610i
\(99\) 0 0
\(100\) −5.70582 + 8.11434i −0.570582 + 0.811434i
\(101\) 15.0198i 1.49453i −0.664527 0.747265i \(-0.731367\pi\)
0.664527 0.747265i \(-0.268633\pi\)
\(102\) −10.2505 + 5.32310i −1.01495 + 0.527066i
\(103\) 2.82480 0.278336 0.139168 0.990269i \(-0.455557\pi\)
0.139168 + 0.990269i \(0.455557\pi\)
\(104\) 0.616010 4.57354i 0.0604047 0.448473i
\(105\) −1.15137 −0.112362
\(106\) −10.9965 + 5.71052i −1.06808 + 0.554655i
\(107\) 0.893354i 0.0863638i 0.999067 + 0.0431819i \(0.0137495\pi\)
−0.999067 + 0.0431819i \(0.986250\pi\)
\(108\) 0.0306478 + 0.0215508i 0.00294909 + 0.00207373i
\(109\) 1.35318i 0.129611i −0.997898 0.0648057i \(-0.979357\pi\)
0.997898 0.0648057i \(-0.0206428\pi\)
\(110\) 0 0
\(111\) −3.13348 −0.297417
\(112\) 3.17461 + 8.83136i 0.299972 + 0.834485i
\(113\) −3.76875 −0.354534 −0.177267 0.984163i \(-0.556726\pi\)
−0.177267 + 0.984163i \(0.556726\pi\)
\(114\) 7.85480 + 15.1257i 0.735670 + 1.41665i
\(115\) 1.85460i 0.172943i
\(116\) −10.1297 7.12297i −0.940518 0.661351i
\(117\) 4.88229i 0.451368i
\(118\) 2.39087 1.24159i 0.220098 0.114298i
\(119\) 7.82768 0.717562
\(120\) −1.37562 0.185282i −0.125576 0.0169138i
\(121\) 0 0
\(122\) −8.02618 + 4.16802i −0.726656 + 0.377355i
\(123\) 14.7624i 1.33108i
\(124\) 9.50145 13.5122i 0.853255 1.21343i
\(125\) 1.99668i 0.178589i
\(126\) 4.57571 + 8.81124i 0.407636 + 0.784968i
\(127\) 7.35273 0.652450 0.326225 0.945292i \(-0.394223\pi\)
0.326225 + 0.945292i \(0.394223\pi\)
\(128\) 2.37176 + 11.0623i 0.209636 + 0.977780i
\(129\) 6.05089 0.532751
\(130\) −0.213186 0.410524i −0.0186977 0.0360053i
\(131\) 6.85311i 0.598759i −0.954134 0.299380i \(-0.903220\pi\)
0.954134 0.299380i \(-0.0967797\pi\)
\(132\) 0 0
\(133\) 11.5506i 1.00156i
\(134\) 10.3838 5.39235i 0.897025 0.465828i
\(135\) 0.00375551 0.000323223
\(136\) 9.35228 + 1.25966i 0.801952 + 0.108015i
\(137\) 2.80303 0.239479 0.119740 0.992805i \(-0.461794\pi\)
0.119740 + 0.992805i \(0.461794\pi\)
\(138\) −28.4224 + 14.7598i −2.41947 + 1.25644i
\(139\) 8.90509i 0.755320i 0.925944 + 0.377660i \(0.123271\pi\)
−0.925944 + 0.377660i \(0.876729\pi\)
\(140\) 0.769490 + 0.541088i 0.0650338 + 0.0457302i
\(141\) 11.6496i 0.981074i
\(142\) −0.813632 1.56678i −0.0682785 0.131481i
\(143\) 0 0
\(144\) 4.04898 + 11.2637i 0.337415 + 0.938646i
\(145\) −1.24127 −0.103082
\(146\) 4.49402 + 8.65394i 0.371928 + 0.716205i
\(147\) 3.66103i 0.301957i
\(148\) 2.09419 + 1.47259i 0.172142 + 0.121046i
\(149\) 12.0459i 0.986837i −0.869792 0.493418i \(-0.835747\pi\)
0.869792 0.493418i \(-0.164253\pi\)
\(150\) 15.2381 7.91322i 1.24419 0.646112i
\(151\) 5.29676 0.431044 0.215522 0.976499i \(-0.430855\pi\)
0.215522 + 0.976499i \(0.430855\pi\)
\(152\) 1.85876 13.8003i 0.150765 1.11935i
\(153\) 9.98363 0.807129
\(154\) 0 0
\(155\) 1.65575i 0.132993i
\(156\) −4.59476 + 6.53429i −0.367875 + 0.523162i
\(157\) 3.95049i 0.315284i 0.987496 + 0.157642i \(0.0503892\pi\)
−0.987496 + 0.157642i \(0.949611\pi\)
\(158\) −9.52998 18.3515i −0.758165 1.45997i
\(159\) 21.4479 1.70093
\(160\) 0.832290 + 0.770304i 0.0657983 + 0.0608979i
\(161\) 21.7045 1.71055
\(162\) −5.88079 11.3244i −0.462039 0.889728i
\(163\) 16.0588i 1.25782i −0.777477 0.628911i \(-0.783501\pi\)
0.777477 0.628911i \(-0.216499\pi\)
\(164\) 6.93761 9.86609i 0.541736 0.770413i
\(165\) 0 0
\(166\) 11.7632 6.10868i 0.913003 0.474126i
\(167\) 9.27935 0.718057 0.359029 0.933327i \(-0.383108\pi\)
0.359029 + 0.933327i \(0.383108\pi\)
\(168\) 2.16836 16.0989i 0.167292 1.24206i
\(169\) 10.3379 0.795224
\(170\) 0.839467 0.435938i 0.0643842 0.0334349i
\(171\) 14.7319i 1.12658i
\(172\) −4.04398 2.84363i −0.308351 0.216825i
\(173\) 8.84221i 0.672261i 0.941815 + 0.336130i \(0.109118\pi\)
−0.941815 + 0.336130i \(0.890882\pi\)
\(174\) 9.87862 + 19.0228i 0.748896 + 1.44212i
\(175\) −11.6365 −0.879635
\(176\) 0 0
\(177\) −4.66323 −0.350510
\(178\) 3.33135 + 6.41503i 0.249695 + 0.480827i
\(179\) 10.6539i 0.796309i −0.917318 0.398154i \(-0.869651\pi\)
0.917318 0.398154i \(-0.130349\pi\)
\(180\) 0.981428 + 0.690118i 0.0731513 + 0.0514383i
\(181\) 13.4165i 0.997238i −0.866821 0.498619i \(-0.833841\pi\)
0.866821 0.498619i \(-0.166159\pi\)
\(182\) 4.80437 2.49493i 0.356124 0.184936i
\(183\) 15.6545 1.15721
\(184\) 25.9319 + 3.49276i 1.91172 + 0.257490i
\(185\) 0.256618 0.0188669
\(186\) −25.3749 + 13.1773i −1.86058 + 0.966204i
\(187\) 0 0
\(188\) −5.47477 + 7.78576i −0.399289 + 0.567835i
\(189\) 0.0439509i 0.00319696i
\(190\) −0.643273 1.23872i −0.0466679 0.0898664i
\(191\) −14.8189 −1.07226 −0.536129 0.844136i \(-0.680114\pi\)
−0.536129 + 0.844136i \(0.680114\pi\)
\(192\) 5.18138 18.8855i 0.373934 1.36295i
\(193\) −4.47394 −0.322041 −0.161021 0.986951i \(-0.551479\pi\)
−0.161021 + 0.986951i \(0.551479\pi\)
\(194\) 0.195360 + 0.376197i 0.0140260 + 0.0270093i
\(195\) 0.800698i 0.0573391i
\(196\) 1.72051 2.44677i 0.122894 0.174769i
\(197\) 20.3350i 1.44881i 0.689373 + 0.724406i \(0.257886\pi\)
−0.689373 + 0.724406i \(0.742114\pi\)
\(198\) 0 0
\(199\) 10.4142 0.738245 0.369122 0.929381i \(-0.379658\pi\)
0.369122 + 0.929381i \(0.379658\pi\)
\(200\) −13.9029 1.87258i −0.983085 0.132412i
\(201\) −20.2529 −1.42853
\(202\) 18.8510 9.78937i 1.32635 0.688778i
\(203\) 14.5266i 1.01957i
\(204\) −13.3617 9.39567i −0.935510 0.657829i
\(205\) 1.20897i 0.0844381i
\(206\) 1.84110 + 3.54532i 0.128275 + 0.247014i
\(207\) 27.6825 1.92407
\(208\) 6.14162 2.20773i 0.425844 0.153078i
\(209\) 0 0
\(210\) −0.750417 1.44505i −0.0517837 0.0997177i
\(211\) 18.7278i 1.28927i 0.764489 + 0.644637i \(0.222992\pi\)
−0.764489 + 0.644637i \(0.777008\pi\)
\(212\) −14.3342 10.0795i −0.984479 0.692263i
\(213\) 3.05588i 0.209386i
\(214\) −1.12122 + 0.582255i −0.0766453 + 0.0398022i
\(215\) −0.495541 −0.0337956
\(216\) −0.00707273 + 0.0525112i −0.000481238 + 0.00357293i
\(217\) 19.3773 1.31542
\(218\) 1.69834 0.881955i 0.115026 0.0597335i
\(219\) 16.8789i 1.14057i
\(220\) 0 0
\(221\) 5.44363i 0.366178i
\(222\) −2.04229 3.93274i −0.137069 0.263949i
\(223\) 14.5773 0.976172 0.488086 0.872796i \(-0.337695\pi\)
0.488086 + 0.872796i \(0.337695\pi\)
\(224\) −9.01489 + 9.74031i −0.602333 + 0.650802i
\(225\) −14.8415 −0.989432
\(226\) −2.45633 4.73005i −0.163393 0.314638i
\(227\) 4.18195i 0.277566i −0.990323 0.138783i \(-0.955681\pi\)
0.990323 0.138783i \(-0.0443190\pi\)
\(228\) −13.8643 + 19.7167i −0.918187 + 1.30577i
\(229\) 23.2412i 1.53582i 0.640557 + 0.767911i \(0.278704\pi\)
−0.640557 + 0.767911i \(0.721296\pi\)
\(230\) 2.32766 1.20876i 0.153481 0.0797034i
\(231\) 0 0
\(232\) 2.33767 17.3560i 0.153476 1.13948i
\(233\) −13.9825 −0.916021 −0.458011 0.888947i \(-0.651438\pi\)
−0.458011 + 0.888947i \(0.651438\pi\)
\(234\) 6.12763 3.18210i 0.400575 0.208020i
\(235\) 0.954051i 0.0622354i
\(236\) 3.11657 + 2.19150i 0.202871 + 0.142654i
\(237\) 35.7932i 2.32502i
\(238\) 5.10179 + 9.82430i 0.330700 + 0.636815i
\(239\) −23.9363 −1.54831 −0.774155 0.632996i \(-0.781825\pi\)
−0.774155 + 0.632996i \(0.781825\pi\)
\(240\) −0.664035 1.84726i −0.0428633 0.119240i
\(241\) −26.1842 −1.68667 −0.843336 0.537387i \(-0.819412\pi\)
−0.843336 + 0.537387i \(0.819412\pi\)
\(242\) 0 0
\(243\) 22.0312i 1.41330i
\(244\) −10.4623 7.35687i −0.669782 0.470975i
\(245\) 0.299822i 0.0191549i
\(246\) −18.5278 + 9.62155i −1.18129 + 0.613448i
\(247\) −8.03265 −0.511105
\(248\) 23.1514 + 3.11827i 1.47012 + 0.198010i
\(249\) −22.9433 −1.45397
\(250\) −2.50598 + 1.30136i −0.158492 + 0.0823055i
\(251\) 19.2762i 1.21671i 0.793667 + 0.608353i \(0.208169\pi\)
−0.793667 + 0.608353i \(0.791831\pi\)
\(252\) −8.07646 + 11.4857i −0.508769 + 0.723530i
\(253\) 0 0
\(254\) 4.79224 + 9.22821i 0.300692 + 0.579029i
\(255\) −1.63732 −0.102533
\(256\) −12.3382 + 10.1867i −0.771136 + 0.636671i
\(257\) 7.36823 0.459618 0.229809 0.973236i \(-0.426190\pi\)
0.229809 + 0.973236i \(0.426190\pi\)
\(258\) 3.94375 + 7.59430i 0.245527 + 0.472801i
\(259\) 3.00321i 0.186610i
\(260\) 0.376290 0.535129i 0.0233365 0.0331873i
\(261\) 18.5276i 1.14683i
\(262\) 8.60115 4.46660i 0.531381 0.275948i
\(263\) 2.69244 0.166023 0.0830114 0.996549i \(-0.473546\pi\)
0.0830114 + 0.996549i \(0.473546\pi\)
\(264\) 0 0
\(265\) −1.75649 −0.107900
\(266\) 14.4968 7.52824i 0.888856 0.461586i
\(267\) 12.5121i 0.765725i
\(268\) 13.5356 + 9.51790i 0.826817 + 0.581398i
\(269\) 15.5571i 0.948532i 0.880382 + 0.474266i \(0.157286\pi\)
−0.880382 + 0.474266i \(0.842714\pi\)
\(270\) 0.00244770 + 0.00471344i 0.000148963 + 0.000286851i
\(271\) −0.934048 −0.0567393 −0.0283697 0.999597i \(-0.509032\pi\)
−0.0283697 + 0.999597i \(0.509032\pi\)
\(272\) 4.51451 + 12.5588i 0.273732 + 0.761488i
\(273\) −9.37058 −0.567133
\(274\) 1.82691 + 3.51800i 0.110368 + 0.212530i
\(275\) 0 0
\(276\) −37.0493 26.0522i −2.23010 1.56816i
\(277\) 13.5603i 0.814760i −0.913259 0.407380i \(-0.866442\pi\)
0.913259 0.407380i \(-0.133558\pi\)
\(278\) −11.1765 + 5.80401i −0.670324 + 0.348101i
\(279\) 24.7144 1.47961
\(280\) −0.177579 + 1.31843i −0.0106124 + 0.0787910i
\(281\) −15.5472 −0.927470 −0.463735 0.885974i \(-0.653491\pi\)
−0.463735 + 0.885974i \(0.653491\pi\)
\(282\) 14.6211 7.59279i 0.870674 0.452144i
\(283\) 2.34360i 0.139313i −0.997571 0.0696564i \(-0.977810\pi\)
0.997571 0.0696564i \(-0.0221903\pi\)
\(284\) 1.43612 2.04233i 0.0852181 0.121190i
\(285\) 2.41604i 0.143114i
\(286\) 0 0
\(287\) 14.1486 0.835166
\(288\) −11.4978 + 12.4231i −0.677516 + 0.732036i
\(289\) −5.86851 −0.345207
\(290\) −0.809014 1.55788i −0.0475069 0.0914821i
\(291\) 0.733744i 0.0430129i
\(292\) −7.93228 + 11.2806i −0.464201 + 0.660149i
\(293\) 18.3947i 1.07463i −0.843381 0.537316i \(-0.819438\pi\)
0.843381 0.537316i \(-0.180562\pi\)
\(294\) −4.59486 + 2.38612i −0.267977 + 0.139162i
\(295\) 0.381897 0.0222349
\(296\) −0.483286 + 3.58814i −0.0280905 + 0.208557i
\(297\) 0 0
\(298\) 15.1184 7.85106i 0.875788 0.454800i
\(299\) 15.0940i 0.872909i
\(300\) 19.8633 + 13.9674i 1.14681 + 0.806410i
\(301\) 5.79932i 0.334267i
\(302\) 3.45223 + 6.64781i 0.198654 + 0.382539i
\(303\) −36.7675 −2.11224
\(304\) 18.5318 6.66164i 1.06287 0.382071i
\(305\) −1.28203 −0.0734089
\(306\) 6.50696 + 12.5302i 0.371978 + 0.716303i
\(307\) 20.3704i 1.16260i 0.813690 + 0.581299i \(0.197455\pi\)
−0.813690 + 0.581299i \(0.802545\pi\)
\(308\) 0 0
\(309\) 6.91490i 0.393375i
\(310\) 2.07809 1.07916i 0.118028 0.0612921i
\(311\) 21.7086 1.23098 0.615492 0.788143i \(-0.288957\pi\)
0.615492 + 0.788143i \(0.288957\pi\)
\(312\) −11.1957 1.50795i −0.633832 0.0853707i
\(313\) 26.8274 1.51637 0.758186 0.652038i \(-0.226086\pi\)
0.758186 + 0.652038i \(0.226086\pi\)
\(314\) −4.95815 + 2.57479i −0.279805 + 0.145304i
\(315\) 1.40743i 0.0792997i
\(316\) 16.8211 23.9216i 0.946263 1.34570i
\(317\) 3.81008i 0.213995i 0.994259 + 0.106998i \(0.0341237\pi\)
−0.994259 + 0.106998i \(0.965876\pi\)
\(318\) 13.9789 + 26.9186i 0.783900 + 1.50952i
\(319\) 0 0
\(320\) −0.424331 + 1.54664i −0.0237208 + 0.0864598i
\(321\) 2.18687 0.122059
\(322\) 14.1462 + 27.2407i 0.788336 + 1.51806i
\(323\) 16.4257i 0.913950i
\(324\) 10.3800 14.7616i 0.576669 0.820091i
\(325\) 8.09239i 0.448885i
\(326\) 20.1550 10.4665i 1.11628 0.579688i
\(327\) −3.31249 −0.183181
\(328\) 16.9043 + 2.27684i 0.933386 + 0.125718i
\(329\) −11.1653 −0.615562
\(330\) 0 0
\(331\) 28.2300i 1.55166i 0.630941 + 0.775831i \(0.282669\pi\)
−0.630941 + 0.775831i \(0.717331\pi\)
\(332\) 15.3337 + 10.7823i 0.841544 + 0.591754i
\(333\) 3.83037i 0.209903i
\(334\) 6.04793 + 11.6462i 0.330928 + 0.637254i
\(335\) 1.65862 0.0906201
\(336\) 21.6185 7.77121i 1.17939 0.423954i
\(337\) −20.5487 −1.11936 −0.559678 0.828710i \(-0.689075\pi\)
−0.559678 + 0.828710i \(0.689075\pi\)
\(338\) 6.73786 + 12.9748i 0.366491 + 0.705737i
\(339\) 9.22563i 0.501067i
\(340\) 1.09427 + 0.769463i 0.0593449 + 0.0417300i
\(341\) 0 0
\(342\) 18.4896 9.60172i 0.999804 0.519201i
\(343\) 19.9319 1.07622
\(344\) 0.933247 6.92886i 0.0503173 0.373579i
\(345\) −4.53994 −0.244422
\(346\) −11.0976 + 5.76302i −0.596611 + 0.309822i
\(347\) 3.76822i 0.202289i 0.994872 + 0.101144i \(0.0322504\pi\)
−0.994872 + 0.101144i \(0.967750\pi\)
\(348\) −17.4365 + 24.7968i −0.934695 + 1.32925i
\(349\) 31.4661i 1.68434i 0.539211 + 0.842170i \(0.318722\pi\)
−0.539211 + 0.842170i \(0.681278\pi\)
\(350\) −7.58422 14.6046i −0.405394 0.780649i
\(351\) 0.0305649 0.00163143
\(352\) 0 0
\(353\) −30.7625 −1.63732 −0.818662 0.574276i \(-0.805284\pi\)
−0.818662 + 0.574276i \(0.805284\pi\)
\(354\) −3.03932 5.85269i −0.161538 0.311067i
\(355\) 0.250263i 0.0132826i
\(356\) −5.88007 + 8.36216i −0.311643 + 0.443193i
\(357\) 19.1616i 1.01414i
\(358\) 13.3714 6.94381i 0.706700 0.366992i
\(359\) −12.4538 −0.657288 −0.328644 0.944454i \(-0.606592\pi\)
−0.328644 + 0.944454i \(0.606592\pi\)
\(360\) −0.226489 + 1.68156i −0.0119370 + 0.0886258i
\(361\) −5.23787 −0.275677
\(362\) 16.8386 8.74436i 0.885019 0.459593i
\(363\) 0 0
\(364\) 6.26262 + 4.40373i 0.328251 + 0.230818i
\(365\) 1.38230i 0.0723531i
\(366\) 10.2030 + 19.6475i 0.533320 + 1.02699i
\(367\) −4.64806 −0.242627 −0.121313 0.992614i \(-0.538711\pi\)
−0.121313 + 0.992614i \(0.538711\pi\)
\(368\) 12.5178 + 34.8228i 0.652534 + 1.81526i
\(369\) 18.0455 0.939412
\(370\) 0.167254 + 0.322074i 0.00869513 + 0.0167438i
\(371\) 20.5562i 1.06722i
\(372\) −33.0768 23.2589i −1.71495 1.20592i
\(373\) 18.0242i 0.933256i −0.884454 0.466628i \(-0.845469\pi\)
0.884454 0.466628i \(-0.154531\pi\)
\(374\) 0 0
\(375\) 4.88774 0.252402
\(376\) −13.3399 1.79676i −0.687955 0.0926606i
\(377\) −10.1023 −0.520294
\(378\) −0.0551615 + 0.0286455i −0.00283720 + 0.00147337i
\(379\) 13.9070i 0.714355i 0.934037 + 0.357177i \(0.116261\pi\)
−0.934037 + 0.357177i \(0.883739\pi\)
\(380\) 1.13542 1.61471i 0.0582461 0.0828327i
\(381\) 17.9990i 0.922114i
\(382\) −9.65841 18.5988i −0.494167 0.951596i
\(383\) −22.5740 −1.15348 −0.576739 0.816928i \(-0.695675\pi\)
−0.576739 + 0.816928i \(0.695675\pi\)
\(384\) 27.0797 5.80589i 1.38191 0.296281i
\(385\) 0 0
\(386\) −2.91595 5.61512i −0.148418 0.285802i
\(387\) 7.39661i 0.375991i
\(388\) −0.344825 + 0.490382i −0.0175058 + 0.0248954i
\(389\) 23.4650i 1.18972i 0.803829 + 0.594861i \(0.202793\pi\)
−0.803829 + 0.594861i \(0.797207\pi\)
\(390\) −1.00493 + 0.521865i −0.0508868 + 0.0264257i
\(391\) 30.8652 1.56092
\(392\) 4.19224 + 0.564652i 0.211740 + 0.0285192i
\(393\) −16.7759 −0.846233
\(394\) −25.5219 + 13.2536i −1.28578 + 0.667708i
\(395\) 2.93130i 0.147490i
\(396\) 0 0
\(397\) 29.9901i 1.50516i 0.658500 + 0.752581i \(0.271191\pi\)
−0.658500 + 0.752581i \(0.728809\pi\)
\(398\) 6.78760 + 13.0706i 0.340232 + 0.655170i
\(399\) −28.2750 −1.41552
\(400\) −6.71118 18.6696i −0.335559 0.933482i
\(401\) −20.2298 −1.01023 −0.505114 0.863052i \(-0.668550\pi\)
−0.505114 + 0.863052i \(0.668550\pi\)
\(402\) −13.2001 25.4188i −0.658360 1.26778i
\(403\) 13.4756i 0.671269i
\(404\) 24.5727 + 17.2790i 1.22254 + 0.859661i
\(405\) 1.80886i 0.0898829i
\(406\) 18.2319 9.46791i 0.904836 0.469885i
\(407\) 0 0
\(408\) 3.08355 22.8937i 0.152658 1.13341i
\(409\) 4.43720 0.219405 0.109703 0.993964i \(-0.465010\pi\)
0.109703 + 0.993964i \(0.465010\pi\)
\(410\) 1.51734 0.787962i 0.0749363 0.0389147i
\(411\) 6.86162i 0.338459i
\(412\) −3.24968 + 4.62142i −0.160100 + 0.227681i
\(413\) 4.46935i 0.219922i
\(414\) 18.0424 + 34.7435i 0.886736 + 1.70755i
\(415\) 1.87895 0.0922342
\(416\) 6.77373 + 6.26925i 0.332110 + 0.307375i
\(417\) 21.7990 1.06750
\(418\) 0 0
\(419\) 6.01641i 0.293921i −0.989142 0.146960i \(-0.953051\pi\)
0.989142 0.146960i \(-0.0469490\pi\)
\(420\) 1.32454 1.88366i 0.0646311 0.0919130i
\(421\) 27.4541i 1.33803i −0.743248 0.669016i \(-0.766716\pi\)
0.743248 0.669016i \(-0.233284\pi\)
\(422\) −23.5047 + 12.2061i −1.14419 + 0.594183i
\(423\) −14.2405 −0.692397
\(424\) 3.30797 24.5599i 0.160649 1.19274i
\(425\) −16.5479 −0.802689
\(426\) −3.83535 + 1.99171i −0.185823 + 0.0964988i
\(427\) 15.0036i 0.726077i
\(428\) −1.46154 1.02772i −0.0706464 0.0496769i
\(429\) 0 0
\(430\) −0.322975 0.621939i −0.0155752 0.0299926i
\(431\) −24.9012 −1.19945 −0.599723 0.800207i \(-0.704723\pi\)
−0.599723 + 0.800207i \(0.704723\pi\)
\(432\) −0.0705151 + 0.0253481i −0.00339266 + 0.00121956i
\(433\) 13.5442 0.650892 0.325446 0.945561i \(-0.394486\pi\)
0.325446 + 0.945561i \(0.394486\pi\)
\(434\) 12.6294 + 24.3199i 0.606231 + 1.16739i
\(435\) 3.03854i 0.145687i
\(436\) 2.21383 + 1.55672i 0.106023 + 0.0745532i
\(437\) 45.5449i 2.17871i
\(438\) 21.1842 11.0010i 1.01222 0.525650i
\(439\) −30.1967 −1.44121 −0.720606 0.693345i \(-0.756136\pi\)
−0.720606 + 0.693345i \(0.756136\pi\)
\(440\) 0 0
\(441\) 4.47525 0.213107
\(442\) 6.83214 3.54795i 0.324972 0.168759i
\(443\) 13.9387i 0.662247i −0.943587 0.331124i \(-0.892572\pi\)
0.943587 0.331124i \(-0.107428\pi\)
\(444\) 3.60479 5.12643i 0.171076 0.243290i
\(445\) 1.02468i 0.0485745i
\(446\) 9.50098 + 18.2956i 0.449884 + 0.866323i
\(447\) −29.4874 −1.39471
\(448\) −18.1004 4.96596i −0.855162 0.234620i
\(449\) 7.05742 0.333060 0.166530 0.986036i \(-0.446744\pi\)
0.166530 + 0.986036i \(0.446744\pi\)
\(450\) −9.67312 18.6271i −0.455995 0.878091i
\(451\) 0 0
\(452\) 4.33561 6.16574i 0.203930 0.290012i
\(453\) 12.9661i 0.609200i
\(454\) 5.24865 2.72564i 0.246331 0.127921i
\(455\) 0.767408 0.0359767
\(456\) −33.7821 4.55011i −1.58199 0.213078i
\(457\) 6.26928 0.293265 0.146632 0.989191i \(-0.453157\pi\)
0.146632 + 0.989191i \(0.453157\pi\)
\(458\) −29.1694 + 15.1478i −1.36300 + 0.707808i
\(459\) 0.0625011i 0.00291730i
\(460\) 3.03417 + 2.13356i 0.141469 + 0.0994776i
\(461\) 18.0857i 0.842334i −0.906983 0.421167i \(-0.861621\pi\)
0.906983 0.421167i \(-0.138379\pi\)
\(462\) 0 0
\(463\) 9.95458 0.462628 0.231314 0.972879i \(-0.425697\pi\)
0.231314 + 0.972879i \(0.425697\pi\)
\(464\) 23.3066 8.37803i 1.08198 0.388940i
\(465\) −4.05316 −0.187961
\(466\) −9.11325 17.5490i −0.422163 0.812941i
\(467\) 32.6180i 1.50938i −0.656082 0.754690i \(-0.727787\pi\)
0.656082 0.754690i \(-0.272213\pi\)
\(468\) 7.98752 + 5.61664i 0.369223 + 0.259629i
\(469\) 19.4109i 0.896311i
\(470\) −1.19740 + 0.621815i −0.0552320 + 0.0286822i
\(471\) 9.67052 0.445594
\(472\) −0.719224 + 5.33985i −0.0331050 + 0.245787i
\(473\) 0 0
\(474\) −44.9231 + 23.3287i −2.06339 + 1.07152i
\(475\) 24.4181i 1.12038i
\(476\) −9.00504 + 12.8062i −0.412745 + 0.586973i
\(477\) 26.2179i 1.20044i
\(478\) −15.6008 30.0418i −0.713563 1.37408i
\(479\) 8.51155 0.388903 0.194451 0.980912i \(-0.437707\pi\)
0.194451 + 0.980912i \(0.437707\pi\)
\(480\) 1.88565 2.03739i 0.0860677 0.0929935i
\(481\) 2.08853 0.0952287
\(482\) −17.0659 32.8630i −0.777330 1.49687i
\(483\) 53.1310i 2.41754i
\(484\) 0 0
\(485\) 0.0600903i 0.00272856i
\(486\) −27.6507 + 14.3591i −1.25426 + 0.651343i
\(487\) 7.13504 0.323319 0.161660 0.986847i \(-0.448315\pi\)
0.161660 + 0.986847i \(0.448315\pi\)
\(488\) 2.41444 17.9259i 0.109296 0.811468i
\(489\) −39.3108 −1.77770
\(490\) 0.376298 0.195413i 0.0169994 0.00882785i
\(491\) 12.1001i 0.546069i −0.962004 0.273035i \(-0.911973\pi\)
0.962004 0.273035i \(-0.0880274\pi\)
\(492\) −24.1515 16.9828i −1.08883 0.765642i
\(493\) 20.6578i 0.930382i
\(494\) −5.23538 10.0816i −0.235551 0.453591i
\(495\) 0 0
\(496\) 11.1756 + 31.0891i 0.501800 + 1.39594i
\(497\) 2.92883 0.131376
\(498\) −14.9536 28.7955i −0.670087 1.29036i
\(499\) 14.0553i 0.629200i 0.949224 + 0.314600i \(0.101870\pi\)
−0.949224 + 0.314600i \(0.898130\pi\)
\(500\) −3.26661 2.29701i −0.146087 0.102725i
\(501\) 22.7152i 1.01484i
\(502\) −24.1931 + 12.5635i −1.07979 + 0.560738i
\(503\) −27.5369 −1.22781 −0.613906 0.789379i \(-0.710403\pi\)
−0.613906 + 0.789379i \(0.710403\pi\)
\(504\) −19.6793 2.65060i −0.876585 0.118067i
\(505\) 3.01109 0.133992
\(506\) 0 0
\(507\) 25.3064i 1.12390i
\(508\) −8.45866 + 12.0292i −0.375292 + 0.533710i
\(509\) 0.301098i 0.0133459i 0.999978 + 0.00667297i \(0.00212409\pi\)
−0.999978 + 0.00667297i \(0.997876\pi\)
\(510\) −1.06714 2.05495i −0.0472539 0.0909949i
\(511\) −16.1771 −0.715634
\(512\) −20.8266 8.84596i −0.920416 0.390940i
\(513\) 0.0922270 0.00407192
\(514\) 4.80234 + 9.24766i 0.211822 + 0.407897i
\(515\) 0.566299i 0.0249541i
\(516\) −6.96101 + 9.89937i −0.306441 + 0.435795i
\(517\) 0 0
\(518\) −3.76924 + 1.95738i −0.165611 + 0.0860023i
\(519\) 21.6451 0.950114
\(520\) 0.916877 + 0.123494i 0.0402077 + 0.00541557i
\(521\) −16.6902 −0.731210 −0.365605 0.930770i \(-0.619138\pi\)
−0.365605 + 0.930770i \(0.619138\pi\)
\(522\) 23.2535 12.0756i 1.01778 0.528536i
\(523\) 5.73532i 0.250788i 0.992107 + 0.125394i \(0.0400195\pi\)
−0.992107 + 0.125394i \(0.959981\pi\)
\(524\) 11.2118 + 7.88389i 0.489791 + 0.344409i
\(525\) 28.4852i 1.24320i
\(526\) 1.75483 + 3.37920i 0.0765142 + 0.147340i
\(527\) 27.5559 1.20035
\(528\) 0 0
\(529\) 62.5827 2.72099
\(530\) −1.14481 2.20451i −0.0497274 0.0957580i
\(531\) 5.70033i 0.247373i
\(532\) 18.8970 + 13.2879i 0.819287 + 0.576104i
\(533\) 9.83940i 0.426192i
\(534\) 15.7035 8.15489i 0.679558 0.352897i
\(535\) −0.179094 −0.00774293
\(536\) −3.12367 + 23.1915i −0.134922 + 1.00172i
\(537\) −26.0799 −1.12543
\(538\) −19.5252 + 10.1395i −0.841793 + 0.437146i
\(539\) 0 0
\(540\) −0.00432038 + 0.00614409i −0.000185920 + 0.000264400i
\(541\) 24.1196i 1.03698i 0.855083 + 0.518491i \(0.173506\pi\)
−0.855083 + 0.518491i \(0.826494\pi\)
\(542\) −0.608778 1.17230i −0.0261492 0.0503545i
\(543\) −32.8425 −1.40941
\(544\) −12.8198 + 13.8514i −0.549644 + 0.593873i
\(545\) 0.271278 0.0116203
\(546\) −6.10740 11.7608i −0.261373 0.503314i
\(547\) 7.39628i 0.316242i −0.987420 0.158121i \(-0.949456\pi\)
0.987420 0.158121i \(-0.0505436\pi\)
\(548\) −3.22464 + 4.58581i −0.137750 + 0.195896i
\(549\) 19.1360i 0.816707i
\(550\) 0 0
\(551\) −30.4828 −1.29861
\(552\) 8.55003 63.4793i 0.363913 2.70186i
\(553\) 34.3051 1.45880
\(554\) 17.0192 8.83811i 0.723075 0.375495i
\(555\) 0.628182i 0.0266648i
\(556\) −14.5689 10.2445i −0.617859 0.434464i
\(557\) 11.4190i 0.483839i −0.970296 0.241920i \(-0.922223\pi\)
0.970296 0.241920i \(-0.0777770\pi\)
\(558\) 16.1079 + 31.0183i 0.681902 + 1.31311i
\(559\) −4.03304 −0.170579
\(560\) −1.77046 + 0.636427i −0.0748155 + 0.0268940i
\(561\) 0 0
\(562\) −10.1331 19.5129i −0.427440 0.823102i
\(563\) 9.71580i 0.409472i −0.978817 0.204736i \(-0.934366\pi\)
0.978817 0.204736i \(-0.0656336\pi\)
\(564\) 19.0590 + 13.4018i 0.802528 + 0.564319i
\(565\) 0.755537i 0.0317857i
\(566\) 2.94139 1.52747i 0.123636 0.0642045i
\(567\) 21.1691 0.889019
\(568\) 3.49929 + 0.471318i 0.146827 + 0.0197761i
\(569\) −24.1045 −1.01051 −0.505257 0.862969i \(-0.668602\pi\)
−0.505257 + 0.862969i \(0.668602\pi\)
\(570\) −3.03230 + 1.57468i −0.127009 + 0.0659563i
\(571\) 12.8180i 0.536415i 0.963361 + 0.268207i \(0.0864312\pi\)
−0.963361 + 0.268207i \(0.913569\pi\)
\(572\) 0 0
\(573\) 36.2756i 1.51543i
\(574\) 9.22153 + 17.7575i 0.384899 + 0.741184i
\(575\) −45.8837 −1.91348
\(576\) −23.0857 6.33372i −0.961904 0.263905i
\(577\) 22.8507 0.951288 0.475644 0.879638i \(-0.342215\pi\)
0.475644 + 0.879638i \(0.342215\pi\)
\(578\) −3.82488 7.36540i −0.159094 0.306360i
\(579\) 10.9519i 0.455145i
\(580\) 1.42797 2.03074i 0.0592932 0.0843220i
\(581\) 21.9894i 0.912276i
\(582\) 0.920902 0.478227i 0.0381726 0.0198232i
\(583\) 0 0
\(584\) −19.3280 2.60328i −0.799797 0.107725i
\(585\) 0.978773 0.0404673
\(586\) 23.0867 11.9890i 0.953703 0.495261i
\(587\) 29.3027i 1.20945i 0.796433 + 0.604726i \(0.206717\pi\)
−0.796433 + 0.604726i \(0.793283\pi\)
\(588\) −5.98951 4.21169i −0.247003 0.173687i
\(589\) 40.6616i 1.67543i
\(590\) 0.248906 + 0.479308i 0.0102473 + 0.0197328i
\(591\) 49.7787 2.04762
\(592\) −4.81836 + 1.73206i −0.198034 + 0.0711872i
\(593\) 10.3694 0.425820 0.212910 0.977072i \(-0.431706\pi\)
0.212910 + 0.977072i \(0.431706\pi\)
\(594\) 0 0
\(595\) 1.56925i 0.0643329i
\(596\) 19.7073 + 13.8577i 0.807242 + 0.567634i
\(597\) 25.4933i 1.04337i
\(598\) 18.9441 9.83772i 0.774681 0.402294i
\(599\) −20.8591 −0.852279 −0.426140 0.904657i \(-0.640127\pi\)
−0.426140 + 0.904657i \(0.640127\pi\)
\(600\) −4.58395 + 34.0333i −0.187139 + 1.38941i
\(601\) 39.2013 1.59906 0.799528 0.600629i \(-0.205083\pi\)
0.799528 + 0.600629i \(0.205083\pi\)
\(602\) 7.27857 3.77978i 0.296652 0.154052i
\(603\) 24.7571i 1.00819i
\(604\) −6.09345 + 8.66560i −0.247939 + 0.352598i
\(605\) 0 0
\(606\) −23.9637 46.1458i −0.973457 1.87454i
\(607\) −26.6834 −1.08305 −0.541523 0.840686i \(-0.682152\pi\)
−0.541523 + 0.840686i \(0.682152\pi\)
\(608\) 20.4392 + 18.9170i 0.828919 + 0.767184i
\(609\) −35.5601 −1.44097
\(610\) −0.835580 1.60904i −0.0338317 0.0651482i
\(611\) 7.76470i 0.314126i
\(612\) −11.4853 + 16.3334i −0.464265 + 0.660239i
\(613\) 30.7684i 1.24272i −0.783523 0.621362i \(-0.786580\pi\)
0.783523 0.621362i \(-0.213420\pi\)
\(614\) −25.5663 + 13.2767i −1.03177 + 0.535802i
\(615\) −2.95947 −0.119337
\(616\) 0 0
\(617\) 10.0183 0.403323 0.201662 0.979455i \(-0.435366\pi\)
0.201662 + 0.979455i \(0.435366\pi\)
\(618\) 8.67869 4.50687i 0.349108 0.181293i
\(619\) 32.0971i 1.29009i 0.764144 + 0.645046i \(0.223162\pi\)
−0.764144 + 0.645046i \(0.776838\pi\)
\(620\) 2.70884 + 1.90480i 0.108790 + 0.0764984i
\(621\) 0.173302i 0.00695438i
\(622\) 14.1489 + 27.2459i 0.567318 + 1.09246i
\(623\) −11.9919 −0.480444
\(624\) −5.40436 15.0342i −0.216347 0.601851i
\(625\) 24.3988 0.975951
\(626\) 17.4851 + 33.6703i 0.698845 + 1.34573i
\(627\) 0 0
\(628\) −6.46308 4.54469i −0.257905 0.181353i
\(629\) 4.27076i 0.170286i
\(630\) −1.76643 + 0.917311i −0.0703761 + 0.0365465i
\(631\) −2.80016 −0.111472 −0.0557362 0.998446i \(-0.517751\pi\)
−0.0557362 + 0.998446i \(0.517751\pi\)
\(632\) 40.9868 + 5.52050i 1.63037 + 0.219594i
\(633\) 45.8443 1.82215
\(634\) −4.78192 + 2.48327i −0.189914 + 0.0986232i
\(635\) 1.47403i 0.0584952i
\(636\) −24.6739 + 35.0891i −0.978383 + 1.39138i
\(637\) 2.44015i 0.0966823i
\(638\) 0 0
\(639\) 3.73551 0.147775
\(640\) −2.21771 + 0.475476i −0.0876626 + 0.0187948i
\(641\) 16.8783 0.666652 0.333326 0.942812i \(-0.391829\pi\)
0.333326 + 0.942812i \(0.391829\pi\)
\(642\) 1.42532 + 2.74467i 0.0562528 + 0.108324i
\(643\) 49.0739i 1.93528i 0.252326 + 0.967642i \(0.418804\pi\)
−0.252326 + 0.967642i \(0.581196\pi\)
\(644\) −24.9691 + 35.5089i −0.983919 + 1.39925i
\(645\) 1.21305i 0.0477637i
\(646\) 20.6154 10.7057i 0.811103 0.421209i
\(647\) −35.3413 −1.38941 −0.694705 0.719295i \(-0.744465\pi\)
−0.694705 + 0.719295i \(0.744465\pi\)
\(648\) 25.2922 + 3.40661i 0.993573 + 0.133824i
\(649\) 0 0
\(650\) −10.1565 + 5.27432i −0.398372 + 0.206876i
\(651\) 47.4343i 1.85910i
\(652\) 26.2725 + 18.4742i 1.02891 + 0.723506i
\(653\) 0.192213i 0.00752186i −0.999993 0.00376093i \(-0.998803\pi\)
0.999993 0.00376093i \(-0.00119714\pi\)
\(654\) −2.15896 4.15742i −0.0844220 0.162568i
\(655\) 1.37387 0.0536816
\(656\) 8.16002 + 22.7001i 0.318595 + 0.886290i
\(657\) −20.6328 −0.804960
\(658\) −7.27711 14.0132i −0.283691 0.546292i
\(659\) 46.4826i 1.81071i 0.424660 + 0.905353i \(0.360394\pi\)
−0.424660 + 0.905353i \(0.639606\pi\)
\(660\) 0 0
\(661\) 24.0904i 0.937007i −0.883462 0.468503i \(-0.844793\pi\)
0.883462 0.468503i \(-0.155207\pi\)
\(662\) −35.4307 + 18.3993i −1.37705 + 0.715108i
\(663\) −13.3256 −0.517523
\(664\) −3.53862 + 26.2723i −0.137325 + 1.01956i
\(665\) 2.31559 0.0897948
\(666\) −4.80739 + 2.49649i −0.186283 + 0.0967371i
\(667\) 57.2798i 2.21788i
\(668\) −10.6751 + 15.1812i −0.413030 + 0.587378i
\(669\) 35.6843i 1.37963i
\(670\) 1.08103 + 2.08169i 0.0417637 + 0.0804226i
\(671\) 0 0
\(672\) 23.8436 + 22.0678i 0.919786 + 0.851284i
\(673\) −7.57085 −0.291835 −0.145917 0.989297i \(-0.546613\pi\)
−0.145917 + 0.989297i \(0.546613\pi\)
\(674\) −13.3929 25.7900i −0.515873 0.993395i
\(675\) 0.0929129i 0.00357622i
\(676\) −11.8928 + 16.9130i −0.457417 + 0.650500i
\(677\) 20.6521i 0.793725i −0.917878 0.396862i \(-0.870099\pi\)
0.917878 0.396862i \(-0.129901\pi\)
\(678\) −11.5788 + 6.01292i −0.444682 + 0.230925i
\(679\) −0.703239 −0.0269878
\(680\) −0.252529 + 1.87489i −0.00968404 + 0.0718988i
\(681\) −10.2371 −0.392287
\(682\) 0 0
\(683\) 14.6272i 0.559694i −0.960045 0.279847i \(-0.909716\pi\)
0.960045 0.279847i \(-0.0902837\pi\)
\(684\) 24.1017 + 16.9477i 0.921551 + 0.648013i
\(685\) 0.561935i 0.0214704i
\(686\) 12.9909 + 25.0160i 0.495994 + 0.955114i
\(687\) 56.8928 2.17059
\(688\) 9.30447 3.34468i 0.354730 0.127515i
\(689\) −14.2954 −0.544613
\(690\) −2.95896 5.69795i −0.112646 0.216917i
\(691\) 22.9427i 0.872781i 0.899757 + 0.436390i \(0.143743\pi\)
−0.899757 + 0.436390i \(0.856257\pi\)
\(692\) −14.4660 10.1722i −0.549915 0.386688i
\(693\) 0 0
\(694\) −4.72938 + 2.45598i −0.179525 + 0.0932279i
\(695\) −1.78524 −0.0677181
\(696\) −42.4862 5.72246i −1.61043 0.216909i
\(697\) 20.1203 0.762109
\(698\) −39.4922 + 20.5084i −1.49480 + 0.776255i
\(699\) 34.2280i 1.29462i
\(700\) 13.3867 19.0375i 0.505970 0.719549i
\(701\) 0.700778i 0.0264680i 0.999912 + 0.0132340i \(0.00421264\pi\)
−0.999912 + 0.0132340i \(0.995787\pi\)
\(702\) 0.0199211 + 0.0383611i 0.000751872 + 0.00144785i
\(703\) 6.30196 0.237683
\(704\) 0 0
\(705\) 2.33545 0.0879580
\(706\) −20.0499 38.6092i −0.754587 1.45307i
\(707\) 35.2388i 1.32529i
\(708\) 5.36462 7.62913i 0.201615 0.286720i
\(709\) 4.05276i 0.152205i 0.997100 + 0.0761023i \(0.0242476\pi\)
−0.997100 + 0.0761023i \(0.975752\pi\)
\(710\) 0.314098 0.163112i 0.0117879 0.00612149i
\(711\) 43.7537 1.64089
\(712\) −14.3275 1.92977i −0.536947 0.0723213i
\(713\) 76.4065 2.86145
\(714\) 24.0492 12.4888i 0.900018 0.467382i
\(715\) 0 0
\(716\) 17.4299 + 12.2563i 0.651388 + 0.458041i
\(717\) 58.5943i 2.18824i
\(718\) −8.11695 15.6305i −0.302922 0.583323i
\(719\) 10.0908 0.376323 0.188161 0.982138i \(-0.439747\pi\)
0.188161 + 0.982138i \(0.439747\pi\)
\(720\) −2.25809 + 0.811716i −0.0841541 + 0.0302509i
\(721\) −6.62741 −0.246818
\(722\) −3.41385 6.57390i −0.127050 0.244655i
\(723\) 64.0970i 2.38379i
\(724\) 21.9496 + 15.4344i 0.815750 + 0.573616i
\(725\) 30.7095i 1.14052i
\(726\) 0 0
\(727\) −13.6615 −0.506675 −0.253338 0.967378i \(-0.581528\pi\)
−0.253338 + 0.967378i \(0.581528\pi\)
\(728\) −1.44525 + 10.7302i −0.0535647 + 0.397689i
\(729\) 26.8621 0.994892
\(730\) −1.73489 + 0.900934i −0.0642112 + 0.0333451i
\(731\) 8.24703i 0.305027i
\(732\) −18.0091 + 25.6110i −0.665635 + 0.946611i
\(733\) 17.9204i 0.661906i 0.943647 + 0.330953i \(0.107370\pi\)
−0.943647 + 0.330953i \(0.892630\pi\)
\(734\) −3.02943 5.83364i −0.111818 0.215324i
\(735\) −0.733942 −0.0270719
\(736\) −35.5465 + 38.4069i −1.31026 + 1.41570i
\(737\) 0 0
\(738\) 11.7614 + 22.6484i 0.432943 + 0.833699i
\(739\) 23.5590i 0.866631i −0.901242 0.433316i \(-0.857344\pi\)
0.901242 0.433316i \(-0.142656\pi\)
\(740\) −0.295216 + 0.419832i −0.0108524 + 0.0154333i
\(741\) 19.6633i 0.722351i
\(742\) 25.7995 13.3978i 0.947129 0.491847i
\(743\) −13.6295 −0.500018 −0.250009 0.968244i \(-0.580434\pi\)
−0.250009 + 0.968244i \(0.580434\pi\)
\(744\) 7.63329 56.6731i 0.279850 2.07774i
\(745\) 2.41489 0.0884746
\(746\) 22.6216 11.7475i 0.828237 0.430106i
\(747\) 28.0459i 1.02615i
\(748\) 0 0
\(749\) 2.09595i 0.0765842i
\(750\) 3.18565 + 6.13446i 0.116323 + 0.223999i
\(751\) −12.2314 −0.446331 −0.223165 0.974781i \(-0.571639\pi\)
−0.223165 + 0.974781i \(0.571639\pi\)
\(752\) −6.43942 17.9136i −0.234822 0.653243i
\(753\) 47.1868 1.71958
\(754\) −6.58430 12.6791i −0.239786 0.461745i
\(755\) 1.06186i 0.0386452i
\(756\) −0.0719044 0.0505615i −0.00261514 0.00183890i
\(757\) 21.3405i 0.775634i 0.921736 + 0.387817i \(0.126771\pi\)
−0.921736 + 0.387817i \(0.873229\pi\)
\(758\) −17.4543 + 9.06407i −0.633968 + 0.329222i
\(759\) 0 0
\(760\) 2.76660 + 0.372633i 0.100355 + 0.0135168i
\(761\) 11.8300 0.428839 0.214419 0.976742i \(-0.431214\pi\)
0.214419 + 0.976742i \(0.431214\pi\)
\(762\) 22.5900 11.7311i 0.818349 0.424971i
\(763\) 3.17478i 0.114935i
\(764\) 17.0478 24.2440i 0.616768 0.877117i
\(765\) 2.00146i 0.0723629i
\(766\) −14.7129 28.3320i −0.531599 1.02368i
\(767\) 3.10813 0.112228
\(768\) 24.9364 + 30.2029i 0.899814 + 1.08985i
\(769\) 2.94327 0.106137 0.0530685 0.998591i \(-0.483100\pi\)
0.0530685 + 0.998591i \(0.483100\pi\)
\(770\) 0 0
\(771\) 18.0369i 0.649583i
\(772\) 5.14687 7.31945i 0.185240 0.263433i
\(773\) 7.95495i 0.286120i 0.989714 + 0.143060i \(0.0456942\pi\)
−0.989714 + 0.143060i \(0.954306\pi\)
\(774\) 9.28328 4.82084i 0.333681 0.173281i
\(775\) −40.9640 −1.47147
\(776\) −0.840209 0.113168i −0.0301617 0.00406248i
\(777\) 7.35163 0.263738
\(778\) −29.4502 + 15.2936i −1.05584 + 0.548302i
\(779\) 29.6896i 1.06374i
\(780\) −1.30996 0.921131i −0.0469039 0.0329818i
\(781\) 0 0
\(782\) 20.1168 + 38.7381i 0.719376 + 1.38527i
\(783\) 0.115990 0.00414513
\(784\) 2.02367 + 5.62958i 0.0722738 + 0.201056i
\(785\) −0.791972 −0.0282667
\(786\) −10.9339 21.0550i −0.390000 0.751006i
\(787\) 2.72311i 0.0970685i 0.998822 + 0.0485342i \(0.0154550\pi\)
−0.998822 + 0.0485342i \(0.984545\pi\)
\(788\) −33.2685 23.3936i −1.18514 0.833364i
\(789\) 6.59089i 0.234642i
\(790\) 3.67900 1.91052i 0.130893 0.0679731i
\(791\) 8.84207 0.314388
\(792\) 0 0
\(793\) −10.4340 −0.370523
\(794\) −37.6398 + 19.5465i −1.33579 + 0.693678i
\(795\) 4.29975i 0.152496i
\(796\) −11.9806 + 17.0379i −0.424642 + 0.603891i
\(797\) 28.0588i 0.993893i −0.867781 0.496947i \(-0.834454\pi\)
0.867781 0.496947i \(-0.165546\pi\)
\(798\) −18.4286 35.4871i −0.652364 1.25623i
\(799\) −15.8778 −0.561715
\(800\) 19.0576 20.5912i 0.673789 0.728009i
\(801\) −15.2947 −0.540413
\(802\) −13.1850 25.3899i −0.465580 0.896547i
\(803\) 0 0
\(804\) 23.2991 33.1341i 0.821697 1.16855i
\(805\) 4.35119i 0.153359i
\(806\) 16.9129 8.78291i 0.595731 0.309365i
\(807\) 38.0826 1.34057
\(808\) −5.67076 + 42.1023i −0.199497 + 1.48115i
\(809\) −32.5279 −1.14362 −0.571810 0.820386i \(-0.693758\pi\)
−0.571810 + 0.820386i \(0.693758\pi\)
\(810\) 2.27025 1.17895i 0.0797683 0.0414240i
\(811\) 8.90533i 0.312708i −0.987701 0.156354i \(-0.950026\pi\)
0.987701 0.156354i \(-0.0499741\pi\)
\(812\) 23.7658 + 16.7116i 0.834017 + 0.586461i
\(813\) 2.28648i 0.0801904i
\(814\) 0 0
\(815\) 3.21938 0.112770
\(816\) 30.7430 11.0512i 1.07622 0.386869i
\(817\) −12.1694 −0.425752
\(818\) 2.89200 + 5.56900i 0.101116 + 0.194716i
\(819\) 11.4546i 0.400256i
\(820\) 1.97790 + 1.39081i 0.0690712 + 0.0485692i
\(821\) 14.3875i 0.502126i 0.967971 + 0.251063i \(0.0807801\pi\)
−0.967971 + 0.251063i \(0.919220\pi\)
\(822\) 8.61182 4.47215i 0.300372 0.155984i
\(823\) −35.3163 −1.23105 −0.615525 0.788117i \(-0.711056\pi\)
−0.615525 + 0.788117i \(0.711056\pi\)
\(824\) −7.91823 1.06651i −0.275845 0.0371535i
\(825\) 0 0
\(826\) −5.60936 + 2.91296i −0.195175 + 0.101355i
\(827\) 12.8333i 0.446257i −0.974789 0.223129i \(-0.928373\pi\)
0.974789 0.223129i \(-0.0716270\pi\)
\(828\) −31.8462 + 45.2890i −1.10673 + 1.57390i
\(829\) 23.8928i 0.829831i −0.909860 0.414916i \(-0.863811\pi\)
0.909860 0.414916i \(-0.136189\pi\)
\(830\) 1.22463 + 2.35822i 0.0425076 + 0.0818551i
\(831\) −33.1947 −1.15151
\(832\) −3.45349 + 12.5876i −0.119728 + 0.436396i
\(833\) 4.98978 0.172886
\(834\) 14.2078 + 27.3593i 0.491976 + 0.947376i
\(835\) 1.86027i 0.0643773i
\(836\) 0 0
\(837\) 0.154721i 0.00534793i
\(838\) 7.55103 3.92127i 0.260846 0.135458i
\(839\) 23.6213 0.815497 0.407748 0.913094i \(-0.366314\pi\)
0.407748 + 0.913094i \(0.366314\pi\)
\(840\) 3.22741 + 0.434700i 0.111356 + 0.0149986i
\(841\) −9.33683 −0.321960
\(842\) 34.4569 17.8936i 1.18746 0.616654i
\(843\) 38.0585i 1.31080i
\(844\) −30.6390 21.5446i −1.05464 0.741597i
\(845\) 2.07248i 0.0712956i
\(846\) −9.28143 17.8728i −0.319102 0.614481i
\(847\) 0 0
\(848\) 32.9805 11.8555i 1.13255 0.407120i
\(849\) −5.73697 −0.196892
\(850\) −10.7853 20.7687i −0.369932 0.712362i
\(851\) 11.8419i 0.405935i
\(852\) −4.99948 3.51552i −0.171279 0.120440i
\(853\) 41.7017i 1.42784i 0.700228 + 0.713919i \(0.253082\pi\)
−0.700228 + 0.713919i \(0.746918\pi\)
\(854\) 18.8306 9.77882i 0.644371 0.334624i
\(855\) 2.95337 0.101003
\(856\) 0.337287 2.50418i 0.0115282 0.0855910i
\(857\) −4.35256 −0.148680 −0.0743402 0.997233i \(-0.523685\pi\)
−0.0743402 + 0.997233i \(0.523685\pi\)
\(858\) 0 0
\(859\) 7.91648i 0.270107i −0.990838 0.135053i \(-0.956879\pi\)
0.990838 0.135053i \(-0.0431206\pi\)
\(860\) 0.570075 0.810713i 0.0194394 0.0276451i
\(861\) 34.6347i 1.18035i
\(862\) −16.2297 31.2527i −0.552784 1.06447i
\(863\) −12.3382 −0.419996 −0.209998 0.977702i \(-0.567346\pi\)
−0.209998 + 0.977702i \(0.567346\pi\)
\(864\) −0.0777728 0.0719805i −0.00264588 0.00244883i
\(865\) −1.77263 −0.0602714
\(866\) 8.82760 + 16.9989i 0.299974 + 0.577647i
\(867\) 14.3657i 0.487884i
\(868\) −22.2919 + 31.7016i −0.756635 + 1.07602i
\(869\) 0 0
\(870\) −3.81359 + 1.98041i −0.129293 + 0.0671421i
\(871\) 13.4990 0.457395
\(872\) −0.510896 + 3.79313i −0.0173011 + 0.128452i
\(873\) −0.896929 −0.0303565
\(874\) 57.1622 29.6845i 1.93354 1.00409i
\(875\) 4.68453i 0.158366i
\(876\) 27.6142 + 19.4176i 0.932996 + 0.656061i
\(877\) 58.3261i 1.96953i 0.173887 + 0.984766i \(0.444367\pi\)
−0.173887 + 0.984766i \(0.555633\pi\)
\(878\) −19.6811 37.8991i −0.664205 1.27903i
\(879\) −45.0289 −1.51879
\(880\) 0 0
\(881\) −25.8106 −0.869581 −0.434791 0.900532i \(-0.643178\pi\)
−0.434791 + 0.900532i \(0.643178\pi\)
\(882\) 2.91680 + 5.61676i 0.0982137 + 0.189126i
\(883\) 36.6024i 1.23177i −0.787836 0.615885i \(-0.788799\pi\)
0.787836 0.615885i \(-0.211201\pi\)
\(884\) 8.90587 + 6.26240i 0.299537 + 0.210627i
\(885\) 0.934857i 0.0314249i
\(886\) 17.4941 9.08473i 0.587725 0.305207i
\(887\) 21.8922 0.735067 0.367534 0.930010i \(-0.380202\pi\)
0.367534 + 0.930010i \(0.380202\pi\)
\(888\) 8.78351 + 1.18305i 0.294755 + 0.0397006i
\(889\) −17.2506 −0.578568
\(890\) −1.28605 + 0.667849i −0.0431084 + 0.0223863i
\(891\) 0 0
\(892\) −16.7699 + 23.8488i −0.561499 + 0.798517i
\(893\) 23.4294i 0.784033i
\(894\) −19.2188 37.0088i −0.642773 1.23776i
\(895\) 2.13583 0.0713929
\(896\) −5.56451 25.9539i −0.185897 0.867058i
\(897\) −36.9490 −1.23369
\(898\) 4.59977 + 8.85757i 0.153496 + 0.295581i
\(899\) 51.1382i 1.70555i
\(900\) 17.0738 24.2809i 0.569126 0.809364i
\(901\) 29.2323i 0.973869i
\(902\) 0 0
\(903\) −14.1963 −0.472424
\(904\) 10.5642 + 1.42290i 0.351361 + 0.0473248i
\(905\) 2.68965 0.0894071
\(906\) 16.2734 8.45081i 0.540646 0.280759i
\(907\) 28.8065i 0.956503i 0.878223 + 0.478252i \(0.158729\pi\)
−0.878223 + 0.478252i \(0.841271\pi\)
\(908\) 6.84175 + 4.81096i 0.227051 + 0.159657i
\(909\) 44.9446i 1.49072i
\(910\) 0.500168 + 0.963152i 0.0165804 + 0.0319282i
\(911\) 44.2181 1.46501 0.732506 0.680760i \(-0.238351\pi\)
0.732506 + 0.680760i \(0.238351\pi\)
\(912\) −16.3072 45.3646i −0.539986 1.50217i
\(913\) 0 0
\(914\) 4.08608 + 7.86840i 0.135156 + 0.260263i
\(915\) 3.13832i 0.103750i
\(916\) −38.0230 26.7369i −1.25632 0.883413i
\(917\) 16.0785i 0.530957i
\(918\) −0.0784434 + 0.0407359i −0.00258902 + 0.00134448i
\(919\) −18.9997 −0.626743 −0.313372 0.949631i \(-0.601459\pi\)
−0.313372 + 0.949631i \(0.601459\pi\)
\(920\) −0.700208 + 5.19867i −0.0230852 + 0.171395i
\(921\) 49.8652 1.64311
\(922\) 22.6988 11.7876i 0.747546 0.388203i
\(923\) 2.03681i 0.0670423i
\(924\) 0 0
\(925\) 6.34883i 0.208748i
\(926\) 6.48802 + 12.4937i 0.213210 + 0.410569i
\(927\) −8.45277 −0.277626
\(928\) 25.7054 + 23.7910i 0.843822 + 0.780977i
\(929\) 28.0670 0.920850 0.460425 0.887699i \(-0.347697\pi\)
0.460425 + 0.887699i \(0.347697\pi\)
\(930\) −2.64170 5.08701i −0.0866248 0.166810i
\(931\) 7.36295i 0.241311i
\(932\) 16.0856 22.8756i 0.526900 0.749314i
\(933\) 53.1411i 1.73976i
\(934\) 40.9379 21.2592i 1.33953 0.695622i
\(935\) 0 0
\(936\) −1.84332 + 13.6856i −0.0602506 + 0.447329i
\(937\) 0.293629 0.00959245 0.00479623 0.999988i \(-0.498473\pi\)
0.00479623 + 0.999988i \(0.498473\pi\)
\(938\) −24.3620 + 12.6513i −0.795449 + 0.413079i
\(939\) 65.6715i 2.14311i
\(940\) −1.56084 1.09755i −0.0509091 0.0357981i
\(941\) 16.1292i 0.525797i −0.964823 0.262899i \(-0.915322\pi\)
0.964823 0.262899i \(-0.0846785\pi\)
\(942\) 6.30289 + 12.1372i 0.205359 + 0.395451i
\(943\) 55.7892 1.81675
\(944\) −7.17066 + 2.57764i −0.233385 + 0.0838950i
\(945\) −0.00881101 −0.000286622
\(946\) 0 0
\(947\) 29.0812i 0.945011i −0.881328 0.472505i \(-0.843350\pi\)
0.881328 0.472505i \(-0.156650\pi\)
\(948\) −58.5584 41.1769i −1.90189 1.33736i
\(949\) 11.2501i 0.365194i
\(950\) −30.6465 + 15.9148i −0.994304 + 0.516345i
\(951\) 9.32680 0.302442
\(952\) −21.9419 2.95535i −0.711141 0.0957835i
\(953\) 40.5658 1.31405 0.657027 0.753867i \(-0.271814\pi\)
0.657027 + 0.753867i \(0.271814\pi\)
\(954\) 32.9054 17.0879i 1.06535 0.553240i
\(955\) 2.97081i 0.0961330i
\(956\) 27.5366 39.1602i 0.890596 1.26653i
\(957\) 0 0
\(958\) 5.54751 + 10.6826i 0.179232 + 0.345139i
\(959\) −6.57634 −0.212361
\(960\) 3.78606 + 1.03873i 0.122195 + 0.0335249i
\(961\) 37.2141 1.20046
\(962\) 1.36123 + 2.62125i 0.0438877 + 0.0845126i
\(963\) 2.67323i 0.0861435i
\(964\) 30.1226 42.8378i 0.970182 1.37971i
\(965\) 0.896909i 0.0288725i
\(966\) 66.6832 34.6288i 2.14550 1.11416i
\(967\) 6.42732 0.206689 0.103344 0.994646i \(-0.467046\pi\)
0.103344 + 0.994646i \(0.467046\pi\)
\(968\) 0 0
\(969\) −40.2089 −1.29170
\(970\) −0.0754177 + 0.0391646i −0.00242152 + 0.00125750i
\(971\) 50.7088i 1.62732i 0.581338 + 0.813662i \(0.302529\pi\)
−0.581338 + 0.813662i \(0.697471\pi\)
\(972\) −36.0435 25.3449i −1.15609 0.812939i
\(973\) 20.8927i 0.669790i
\(974\) 4.65035 + 8.95498i 0.149007 + 0.286936i
\(975\) 19.8096 0.634414
\(976\) 24.0719 8.65315i 0.770524 0.276981i
\(977\) −0.100545 −0.00321673 −0.00160837 0.999999i \(-0.500512\pi\)
−0.00160837 + 0.999999i \(0.500512\pi\)
\(978\) −25.6213 49.3379i −0.819279 1.57765i
\(979\) 0 0
\(980\) 0.490514 + 0.344918i 0.0156689 + 0.0110180i
\(981\) 4.04919i 0.129281i
\(982\) 15.1865 7.88639i 0.484620 0.251665i
\(983\) 26.3392 0.840091 0.420046 0.907503i \(-0.362014\pi\)
0.420046 + 0.907503i \(0.362014\pi\)
\(984\) 5.57354 41.3806i 0.177678 1.31916i
\(985\) −4.07665 −0.129893
\(986\) 25.9271 13.4640i 0.825686 0.428781i
\(987\) 27.3318i 0.869980i
\(988\) 9.24084 13.1416i 0.293990 0.418089i
\(989\) 22.8672i 0.727136i
\(990\) 0 0
\(991\) −27.9640 −0.888306 −0.444153 0.895951i \(-0.646495\pi\)
−0.444153 + 0.895951i \(0.646495\pi\)
\(992\) −31.7352 + 34.2889i −1.00759 + 1.08867i
\(993\) 69.1050 2.19298
\(994\) 1.90891 + 3.67590i 0.0605468 + 0.116592i
\(995\) 2.08778i 0.0661871i
\(996\) 26.3942 37.5357i 0.836333 1.18936i
\(997\) 57.2928i 1.81448i 0.420612 + 0.907241i \(0.361815\pi\)
−0.420612 + 0.907241i \(0.638185\pi\)
\(998\) −17.6404 + 9.16071i −0.558396 + 0.289977i
\(999\) −0.0239795 −0.000758677
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 968.2.c.h.485.14 20
4.3 odd 2 3872.2.c.h.1937.17 20
8.3 odd 2 3872.2.c.h.1937.4 20
8.5 even 2 inner 968.2.c.h.485.13 20
11.2 odd 10 968.2.o.i.565.4 40
11.3 even 5 968.2.o.j.493.10 40
11.4 even 5 968.2.o.j.269.2 40
11.5 even 5 88.2.o.a.69.2 yes 40
11.6 odd 10 968.2.o.i.245.9 40
11.7 odd 10 968.2.o.d.269.9 40
11.8 odd 10 968.2.o.d.493.1 40
11.9 even 5 88.2.o.a.37.7 yes 40
11.10 odd 2 968.2.c.i.485.7 20
33.5 odd 10 792.2.br.b.685.9 40
33.20 odd 10 792.2.br.b.37.4 40
44.27 odd 10 352.2.w.a.113.2 40
44.31 odd 10 352.2.w.a.81.9 40
44.43 even 2 3872.2.c.i.1937.17 20
88.5 even 10 88.2.o.a.69.7 yes 40
88.13 odd 10 968.2.o.i.565.9 40
88.21 odd 2 968.2.c.i.485.8 20
88.27 odd 10 352.2.w.a.113.9 40
88.29 odd 10 968.2.o.d.269.1 40
88.37 even 10 968.2.o.j.269.10 40
88.43 even 2 3872.2.c.i.1937.4 20
88.53 even 10 88.2.o.a.37.2 40
88.61 odd 10 968.2.o.i.245.4 40
88.69 even 10 968.2.o.j.493.2 40
88.75 odd 10 352.2.w.a.81.2 40
88.85 odd 10 968.2.o.d.493.9 40
264.5 odd 10 792.2.br.b.685.4 40
264.53 odd 10 792.2.br.b.37.9 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
88.2.o.a.37.2 40 88.53 even 10
88.2.o.a.37.7 yes 40 11.9 even 5
88.2.o.a.69.2 yes 40 11.5 even 5
88.2.o.a.69.7 yes 40 88.5 even 10
352.2.w.a.81.2 40 88.75 odd 10
352.2.w.a.81.9 40 44.31 odd 10
352.2.w.a.113.2 40 44.27 odd 10
352.2.w.a.113.9 40 88.27 odd 10
792.2.br.b.37.4 40 33.20 odd 10
792.2.br.b.37.9 40 264.53 odd 10
792.2.br.b.685.4 40 264.5 odd 10
792.2.br.b.685.9 40 33.5 odd 10
968.2.c.h.485.13 20 8.5 even 2 inner
968.2.c.h.485.14 20 1.1 even 1 trivial
968.2.c.i.485.7 20 11.10 odd 2
968.2.c.i.485.8 20 88.21 odd 2
968.2.o.d.269.1 40 88.29 odd 10
968.2.o.d.269.9 40 11.7 odd 10
968.2.o.d.493.1 40 11.8 odd 10
968.2.o.d.493.9 40 88.85 odd 10
968.2.o.i.245.4 40 88.61 odd 10
968.2.o.i.245.9 40 11.6 odd 10
968.2.o.i.565.4 40 11.2 odd 10
968.2.o.i.565.9 40 88.13 odd 10
968.2.o.j.269.2 40 11.4 even 5
968.2.o.j.269.10 40 88.37 even 10
968.2.o.j.493.2 40 88.69 even 10
968.2.o.j.493.10 40 11.3 even 5
3872.2.c.h.1937.4 20 8.3 odd 2
3872.2.c.h.1937.17 20 4.3 odd 2
3872.2.c.i.1937.4 20 88.43 even 2
3872.2.c.i.1937.17 20 44.43 even 2