Properties

Label 3872.2.c.i.1937.17
Level 38723872
Weight 22
Character 3872.1937
Analytic conductor 30.91830.918
Analytic rank 00
Dimension 2020
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3872,2,Mod(1937,3872)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3872, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3872.1937");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 3872=25112 3872 = 2^{5} \cdot 11^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 3872.c (of order 22, degree 11, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 30.918075662630.9180756626
Analytic rank: 00
Dimension: 2020
Coefficient field: Q[x]/(x20)\mathbb{Q}[x]/(x^{20} - \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x20x182x162x154x144x13+12x12+16x11+32x9++1024 x^{20} - x^{18} - 2 x^{16} - 2 x^{15} - 4 x^{14} - 4 x^{13} + 12 x^{12} + 16 x^{11} + 32 x^{9} + \cdots + 1024 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 212 2^{12}
Twist minimal: no (minimal twist has level 88)
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

Embedding invariants

Embedding label 1937.17
Root 0.651763+1.25507i0.651763 + 1.25507i of defining polynomial
Character χ\chi == 3872.1937
Dual form 3872.2.c.i.1937.4

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+2.44793iq3+0.200474iq52.34615q72.99235q91.63159iq130.490746q15+3.33639q17+4.92320iq195.74321iq21+9.25109q23+4.95981q25+0.0187332iq276.19167iq29+8.25919q310.470343iq351.28006iq37+3.99402q39+6.03055q41+2.47184iq430.599888iq454.75897q471.49556q49+8.16724iq51+8.76165iq5312.0516q57+1.90497iq596.39500iq61+7.02051q63+0.327092q65+8.27349iq67+22.6460iq69+1.24836q716.89517q73+12.1413iq7514.6219q799.02290q819.37255iq83+0.668860iq85+15.1568q87+5.11129q89+3.82797iq91+20.2179iq930.986974q95+0.299741q97+O(q100)q+2.44793i q^{3} +0.200474i q^{5} -2.34615 q^{7} -2.99235 q^{9} -1.63159i q^{13} -0.490746 q^{15} +3.33639 q^{17} +4.92320i q^{19} -5.74321i q^{21} +9.25109 q^{23} +4.95981 q^{25} +0.0187332i q^{27} -6.19167i q^{29} +8.25919 q^{31} -0.470343i q^{35} -1.28006i q^{37} +3.99402 q^{39} +6.03055 q^{41} +2.47184i q^{43} -0.599888i q^{45} -4.75897 q^{47} -1.49556 q^{49} +8.16724i q^{51} +8.76165i q^{53} -12.0516 q^{57} +1.90497i q^{59} -6.39500i q^{61} +7.02051 q^{63} +0.327092 q^{65} +8.27349i q^{67} +22.6460i q^{69} +1.24836 q^{71} -6.89517 q^{73} +12.1413i q^{75} -14.6219 q^{79} -9.02290 q^{81} -9.37255i q^{83} +0.668860i q^{85} +15.1568 q^{87} +5.11129 q^{89} +3.82797i q^{91} +20.2179i q^{93} -0.986974 q^{95} +0.299741 q^{97} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 20q+10q710q9+4q152q17+4q232q252q31+28q39+2q412q472q4922q5730q63+18q65+34q712q7358q7912q81++10q97+O(q100) 20 q + 10 q^{7} - 10 q^{9} + 4 q^{15} - 2 q^{17} + 4 q^{23} - 2 q^{25} - 2 q^{31} + 28 q^{39} + 2 q^{41} - 2 q^{47} - 2 q^{49} - 22 q^{57} - 30 q^{63} + 18 q^{65} + 34 q^{71} - 2 q^{73} - 58 q^{79} - 12 q^{81}+ \cdots + 10 q^{97}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/3872Z)×\left(\mathbb{Z}/3872\mathbb{Z}\right)^\times.

nn 485485 16951695 27852785
χ(n)\chi(n) 1-1 11 11

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 0 0
33 2.44793i 1.41331i 0.707558 + 0.706656i 0.249797π0.249797\pi
−0.707558 + 0.706656i 0.750203π0.750203\pi
44 0 0
55 0.200474i 0.0896548i 0.998995 + 0.0448274i 0.0142738π0.0142738\pi
−0.998995 + 0.0448274i 0.985726π0.985726\pi
66 0 0
77 −2.34615 −0.886763 −0.443381 0.896333i 0.646221π-0.646221\pi
−0.443381 + 0.896333i 0.646221π0.646221\pi
88 0 0
99 −2.99235 −0.997449
1010 0 0
1111 0 0
1212 0 0
1313 − 1.63159i − 0.452522i −0.974067 0.226261i 0.927350π-0.927350\pi
0.974067 0.226261i 0.0726503π-0.0726503\pi
1414 0 0
1515 −0.490746 −0.126710
1616 0 0
1717 3.33639 0.809193 0.404597 0.914495i 0.367412π-0.367412\pi
0.404597 + 0.914495i 0.367412π0.367412\pi
1818 0 0
1919 4.92320i 1.12946i 0.825276 + 0.564729i 0.191019π0.191019\pi
−0.825276 + 0.564729i 0.808981π0.808981\pi
2020 0 0
2121 − 5.74321i − 1.25327i
2222 0 0
2323 9.25109 1.92899 0.964493 0.264108i 0.0850776π-0.0850776\pi
0.964493 + 0.264108i 0.0850776π0.0850776\pi
2424 0 0
2525 4.95981 0.991962
2626 0 0
2727 0.0187332i 0.00360520i
2828 0 0
2929 − 6.19167i − 1.14977i −0.818236 0.574883i 0.805048π-0.805048\pi
0.818236 0.574883i 0.194952π-0.194952\pi
3030 0 0
3131 8.25919 1.48339 0.741697 0.670735i 0.234021π-0.234021\pi
0.741697 + 0.670735i 0.234021π0.234021\pi
3232 0 0
3333 0 0
3434 0 0
3535 − 0.470343i − 0.0795025i
3636 0 0
3737 − 1.28006i − 0.210440i −0.994449 0.105220i 0.966445π-0.966445\pi
0.994449 0.105220i 0.0335546π-0.0335546\pi
3838 0 0
3939 3.99402 0.639555
4040 0 0
4141 6.03055 0.941814 0.470907 0.882183i 0.343927π-0.343927\pi
0.470907 + 0.882183i 0.343927π0.343927\pi
4242 0 0
4343 2.47184i 0.376952i 0.982078 + 0.188476i 0.0603549π0.0603549\pi
−0.982078 + 0.188476i 0.939645π0.939645\pi
4444 0 0
4545 − 0.599888i − 0.0894261i
4646 0 0
4747 −4.75897 −0.694167 −0.347084 0.937834i 0.612828π-0.612828\pi
−0.347084 + 0.937834i 0.612828π0.612828\pi
4848 0 0
4949 −1.49556 −0.213652
5050 0 0
5151 8.16724i 1.14364i
5252 0 0
5353 8.76165i 1.20351i 0.798682 + 0.601753i 0.205531π0.205531\pi
−0.798682 + 0.601753i 0.794469π0.794469\pi
5454 0 0
5555 0 0
5656 0 0
5757 −12.0516 −1.59628
5858 0 0
5959 1.90497i 0.248006i 0.992282 + 0.124003i 0.0395732π0.0395732\pi
−0.992282 + 0.124003i 0.960427π0.960427\pi
6060 0 0
6161 − 6.39500i − 0.818795i −0.912356 0.409398i 0.865739π-0.865739\pi
0.912356 0.409398i 0.134261π-0.134261\pi
6262 0 0
6363 7.02051 0.884501
6464 0 0
6565 0.327092 0.0405708
6666 0 0
6767 8.27349i 1.01077i 0.862895 + 0.505384i 0.168649π0.168649\pi
−0.862895 + 0.505384i 0.831351π0.831351\pi
6868 0 0
6969 22.6460i 2.72626i
7070 0 0
7171 1.24836 0.148153 0.0740763 0.997253i 0.476399π-0.476399\pi
0.0740763 + 0.997253i 0.476399π0.476399\pi
7272 0 0
7373 −6.89517 −0.807019 −0.403510 0.914975i 0.632210π-0.632210\pi
−0.403510 + 0.914975i 0.632210π0.632210\pi
7474 0 0
7575 12.1413i 1.40195i
7676 0 0
7777 0 0
7878 0 0
7979 −14.6219 −1.64509 −0.822544 0.568702i 0.807446π-0.807446\pi
−0.822544 + 0.568702i 0.807446π0.807446\pi
8080 0 0
8181 −9.02290 −1.00254
8282 0 0
8383 − 9.37255i − 1.02877i −0.857559 0.514386i 0.828020π-0.828020\pi
0.857559 0.514386i 0.171980π-0.171980\pi
8484 0 0
8585 0.668860i 0.0725480i
8686 0 0
8787 15.1568 1.62498
8888 0 0
8989 5.11129 0.541795 0.270898 0.962608i 0.412680π-0.412680\pi
0.270898 + 0.962608i 0.412680π0.412680\pi
9090 0 0
9191 3.82797i 0.401280i
9292 0 0
9393 20.2179i 2.09650i
9494 0 0
9595 −0.986974 −0.101261
9696 0 0
9797 0.299741 0.0304341 0.0152170 0.999884i 0.495156π-0.495156\pi
0.0152170 + 0.999884i 0.495156π0.495156\pi
9898 0 0
9999 0 0
100100 0 0
101101 15.0198i 1.49453i 0.664527 + 0.747265i 0.268633π0.268633\pi
−0.664527 + 0.747265i 0.731367π0.731367\pi
102102 0 0
103103 −2.82480 −0.278336 −0.139168 0.990269i 0.544443π-0.544443\pi
−0.139168 + 0.990269i 0.544443π0.544443\pi
104104 0 0
105105 1.15137 0.112362
106106 0 0
107107 0.893354i 0.0863638i 0.999067 + 0.0431819i 0.0137495π0.0137495\pi
−0.999067 + 0.0431819i 0.986250π0.986250\pi
108108 0 0
109109 1.35318i 0.129611i 0.997898 + 0.0648057i 0.0206428π0.0206428\pi
−0.997898 + 0.0648057i 0.979357π0.979357\pi
110110 0 0
111111 3.13348 0.297417
112112 0 0
113113 −3.76875 −0.354534 −0.177267 0.984163i 0.556726π-0.556726\pi
−0.177267 + 0.984163i 0.556726π0.556726\pi
114114 0 0
115115 1.85460i 0.172943i
116116 0 0
117117 4.88229i 0.451368i
118118 0 0
119119 −7.82768 −0.717562
120120 0 0
121121 0 0
122122 0 0
123123 14.7624i 1.33108i
124124 0 0
125125 1.99668i 0.178589i
126126 0 0
127127 7.35273 0.652450 0.326225 0.945292i 0.394223π-0.394223\pi
0.326225 + 0.945292i 0.394223π0.394223\pi
128128 0 0
129129 −6.05089 −0.532751
130130 0 0
131131 − 6.85311i − 0.598759i −0.954134 0.299380i 0.903220π-0.903220\pi
0.954134 0.299380i 0.0967797π-0.0967797\pi
132132 0 0
133133 − 11.5506i − 1.00156i
134134 0 0
135135 −0.00375551 −0.000323223 0
136136 0 0
137137 2.80303 0.239479 0.119740 0.992805i 0.461794π-0.461794\pi
0.119740 + 0.992805i 0.461794π0.461794\pi
138138 0 0
139139 8.90509i 0.755320i 0.925944 + 0.377660i 0.123271π0.123271\pi
−0.925944 + 0.377660i 0.876729π0.876729\pi
140140 0 0
141141 − 11.6496i − 0.981074i
142142 0 0
143143 0 0
144144 0 0
145145 1.24127 0.103082
146146 0 0
147147 − 3.66103i − 0.301957i
148148 0 0
149149 12.0459i 0.986837i 0.869792 + 0.493418i 0.164253π0.164253\pi
−0.869792 + 0.493418i 0.835747π0.835747\pi
150150 0 0
151151 5.29676 0.431044 0.215522 0.976499i 0.430855π-0.430855\pi
0.215522 + 0.976499i 0.430855π0.430855\pi
152152 0 0
153153 −9.98363 −0.807129
154154 0 0
155155 1.65575i 0.132993i
156156 0 0
157157 3.95049i 0.315284i 0.987496 + 0.157642i 0.0503892π0.0503892\pi
−0.987496 + 0.157642i 0.949611π0.949611\pi
158158 0 0
159159 −21.4479 −1.70093
160160 0 0
161161 −21.7045 −1.71055
162162 0 0
163163 16.0588i 1.25782i 0.777477 + 0.628911i 0.216499π0.216499\pi
−0.777477 + 0.628911i 0.783501π0.783501\pi
164164 0 0
165165 0 0
166166 0 0
167167 9.27935 0.718057 0.359029 0.933327i 0.383108π-0.383108\pi
0.359029 + 0.933327i 0.383108π0.383108\pi
168168 0 0
169169 10.3379 0.795224
170170 0 0
171171 − 14.7319i − 1.12658i
172172 0 0
173173 − 8.84221i − 0.672261i −0.941815 0.336130i 0.890882π-0.890882\pi
0.941815 0.336130i 0.109118π-0.109118\pi
174174 0 0
175175 −11.6365 −0.879635
176176 0 0
177177 −4.66323 −0.350510
178178 0 0
179179 10.6539i 0.796309i 0.917318 + 0.398154i 0.130349π0.130349\pi
−0.917318 + 0.398154i 0.869651π0.869651\pi
180180 0 0
181181 − 13.4165i − 0.997238i −0.866821 0.498619i 0.833841π-0.833841\pi
0.866821 0.498619i 0.166159π-0.166159\pi
182182 0 0
183183 15.6545 1.15721
184184 0 0
185185 0.256618 0.0188669
186186 0 0
187187 0 0
188188 0 0
189189 − 0.0439509i − 0.00319696i
190190 0 0
191191 14.8189 1.07226 0.536129 0.844136i 0.319886π-0.319886\pi
0.536129 + 0.844136i 0.319886π0.319886\pi
192192 0 0
193193 4.47394 0.322041 0.161021 0.986951i 0.448521π-0.448521\pi
0.161021 + 0.986951i 0.448521π0.448521\pi
194194 0 0
195195 0.800698i 0.0573391i
196196 0 0
197197 − 20.3350i − 1.44881i −0.689373 0.724406i 0.742114π-0.742114\pi
0.689373 0.724406i 0.257886π-0.257886\pi
198198 0 0
199199 −10.4142 −0.738245 −0.369122 0.929381i 0.620342π-0.620342\pi
−0.369122 + 0.929381i 0.620342π0.620342\pi
200200 0 0
201201 −20.2529 −1.42853
202202 0 0
203203 14.5266i 1.01957i
204204 0 0
205205 1.20897i 0.0844381i
206206 0 0
207207 −27.6825 −1.92407
208208 0 0
209209 0 0
210210 0 0
211211 18.7278i 1.28927i 0.764489 + 0.644637i 0.222992π0.222992\pi
−0.764489 + 0.644637i 0.777008π0.777008\pi
212212 0 0
213213 3.05588i 0.209386i
214214 0 0
215215 −0.495541 −0.0337956
216216 0 0
217217 −19.3773 −1.31542
218218 0 0
219219 − 16.8789i − 1.14057i
220220 0 0
221221 − 5.44363i − 0.366178i
222222 0 0
223223 −14.5773 −0.976172 −0.488086 0.872796i 0.662305π-0.662305\pi
−0.488086 + 0.872796i 0.662305π0.662305\pi
224224 0 0
225225 −14.8415 −0.989432
226226 0 0
227227 − 4.18195i − 0.277566i −0.990323 0.138783i 0.955681π-0.955681\pi
0.990323 0.138783i 0.0443190π-0.0443190\pi
228228 0 0
229229 23.2412i 1.53582i 0.640557 + 0.767911i 0.278704π0.278704\pi
−0.640557 + 0.767911i 0.721296π0.721296\pi
230230 0 0
231231 0 0
232232 0 0
233233 13.9825 0.916021 0.458011 0.888947i 0.348562π-0.348562\pi
0.458011 + 0.888947i 0.348562π0.348562\pi
234234 0 0
235235 − 0.954051i − 0.0622354i
236236 0 0
237237 − 35.7932i − 2.32502i
238238 0 0
239239 −23.9363 −1.54831 −0.774155 0.632996i 0.781825π-0.781825\pi
−0.774155 + 0.632996i 0.781825π0.781825\pi
240240 0 0
241241 26.1842 1.68667 0.843336 0.537387i 0.180588π-0.180588\pi
0.843336 + 0.537387i 0.180588π0.180588\pi
242242 0 0
243243 − 22.0312i − 1.41330i
244244 0 0
245245 − 0.299822i − 0.0191549i
246246 0 0
247247 8.03265 0.511105
248248 0 0
249249 22.9433 1.45397
250250 0 0
251251 − 19.2762i − 1.21671i −0.793667 0.608353i 0.791831π-0.791831\pi
0.793667 0.608353i 0.208169π-0.208169\pi
252252 0 0
253253 0 0
254254 0 0
255255 −1.63732 −0.102533
256256 0 0
257257 7.36823 0.459618 0.229809 0.973236i 0.426190π-0.426190\pi
0.229809 + 0.973236i 0.426190π0.426190\pi
258258 0 0
259259 3.00321i 0.186610i
260260 0 0
261261 18.5276i 1.14683i
262262 0 0
263263 2.69244 0.166023 0.0830114 0.996549i 0.473546π-0.473546\pi
0.0830114 + 0.996549i 0.473546π0.473546\pi
264264 0 0
265265 −1.75649 −0.107900
266266 0 0
267267 12.5121i 0.765725i
268268 0 0
269269 15.5571i 0.948532i 0.880382 + 0.474266i 0.157286π0.157286\pi
−0.880382 + 0.474266i 0.842714π0.842714\pi
270270 0 0
271271 −0.934048 −0.0567393 −0.0283697 0.999597i 0.509032π-0.509032\pi
−0.0283697 + 0.999597i 0.509032π0.509032\pi
272272 0 0
273273 −9.37058 −0.567133
274274 0 0
275275 0 0
276276 0 0
277277 13.5603i 0.814760i 0.913259 + 0.407380i 0.133558π0.133558\pi
−0.913259 + 0.407380i 0.866442π0.866442\pi
278278 0 0
279279 −24.7144 −1.47961
280280 0 0
281281 15.5472 0.927470 0.463735 0.885974i 0.346509π-0.346509\pi
0.463735 + 0.885974i 0.346509π0.346509\pi
282282 0 0
283283 − 2.34360i − 0.139313i −0.997571 0.0696564i 0.977810π-0.977810\pi
0.997571 0.0696564i 0.0221903π-0.0221903\pi
284284 0 0
285285 − 2.41604i − 0.143114i
286286 0 0
287287 −14.1486 −0.835166
288288 0 0
289289 −5.86851 −0.345207
290290 0 0
291291 0.733744i 0.0430129i
292292 0 0
293293 18.3947i 1.07463i 0.843381 + 0.537316i 0.180562π0.180562\pi
−0.843381 + 0.537316i 0.819438π0.819438\pi
294294 0 0
295295 −0.381897 −0.0222349
296296 0 0
297297 0 0
298298 0 0
299299 − 15.0940i − 0.872909i
300300 0 0
301301 − 5.79932i − 0.334267i
302302 0 0
303303 −36.7675 −2.11224
304304 0 0
305305 1.28203 0.0734089
306306 0 0
307307 20.3704i 1.16260i 0.813690 + 0.581299i 0.197455π0.197455\pi
−0.813690 + 0.581299i 0.802545π0.802545\pi
308308 0 0
309309 − 6.91490i − 0.393375i
310310 0 0
311311 −21.7086 −1.23098 −0.615492 0.788143i 0.711043π-0.711043\pi
−0.615492 + 0.788143i 0.711043π0.711043\pi
312312 0 0
313313 26.8274 1.51637 0.758186 0.652038i 0.226086π-0.226086\pi
0.758186 + 0.652038i 0.226086π0.226086\pi
314314 0 0
315315 1.40743i 0.0792997i
316316 0 0
317317 3.81008i 0.213995i 0.994259 + 0.106998i 0.0341237π0.0341237\pi
−0.994259 + 0.106998i 0.965876π0.965876\pi
318318 0 0
319319 0 0
320320 0 0
321321 −2.18687 −0.122059
322322 0 0
323323 16.4257i 0.913950i
324324 0 0
325325 − 8.09239i − 0.448885i
326326 0 0
327327 −3.31249 −0.183181
328328 0 0
329329 11.1653 0.615562
330330 0 0
331331 − 28.2300i − 1.55166i −0.630941 0.775831i 0.717331π-0.717331\pi
0.630941 0.775831i 0.282669π-0.282669\pi
332332 0 0
333333 3.83037i 0.209903i
334334 0 0
335335 −1.65862 −0.0906201
336336 0 0
337337 20.5487 1.11936 0.559678 0.828710i 0.310925π-0.310925\pi
0.559678 + 0.828710i 0.310925π0.310925\pi
338338 0 0
339339 − 9.22563i − 0.501067i
340340 0 0
341341 0 0
342342 0 0
343343 19.9319 1.07622
344344 0 0
345345 −4.53994 −0.244422
346346 0 0
347347 3.76822i 0.202289i 0.994872 + 0.101144i 0.0322504π0.0322504\pi
−0.994872 + 0.101144i 0.967750π0.967750\pi
348348 0 0
349349 − 31.4661i − 1.68434i −0.539211 0.842170i 0.681278π-0.681278\pi
0.539211 0.842170i 0.318722π-0.318722\pi
350350 0 0
351351 0.0305649 0.00163143
352352 0 0
353353 −30.7625 −1.63732 −0.818662 0.574276i 0.805284π-0.805284\pi
−0.818662 + 0.574276i 0.805284π0.805284\pi
354354 0 0
355355 0.250263i 0.0132826i
356356 0 0
357357 − 19.1616i − 1.01414i
358358 0 0
359359 −12.4538 −0.657288 −0.328644 0.944454i 0.606592π-0.606592\pi
−0.328644 + 0.944454i 0.606592π0.606592\pi
360360 0 0
361361 −5.23787 −0.275677
362362 0 0
363363 0 0
364364 0 0
365365 − 1.38230i − 0.0723531i
366366 0 0
367367 4.64806 0.242627 0.121313 0.992614i 0.461289π-0.461289\pi
0.121313 + 0.992614i 0.461289π0.461289\pi
368368 0 0
369369 −18.0455 −0.939412
370370 0 0
371371 − 20.5562i − 1.06722i
372372 0 0
373373 18.0242i 0.933256i 0.884454 + 0.466628i 0.154531π0.154531\pi
−0.884454 + 0.466628i 0.845469π0.845469\pi
374374 0 0
375375 −4.88774 −0.252402
376376 0 0
377377 −10.1023 −0.520294
378378 0 0
379379 − 13.9070i − 0.714355i −0.934037 0.357177i 0.883739π-0.883739\pi
0.934037 0.357177i 0.116261π-0.116261\pi
380380 0 0
381381 17.9990i 0.922114i
382382 0 0
383383 22.5740 1.15348 0.576739 0.816928i 0.304325π-0.304325\pi
0.576739 + 0.816928i 0.304325π0.304325\pi
384384 0 0
385385 0 0
386386 0 0
387387 − 7.39661i − 0.375991i
388388 0 0
389389 23.4650i 1.18972i 0.803829 + 0.594861i 0.202793π0.202793\pi
−0.803829 + 0.594861i 0.797207π0.797207\pi
390390 0 0
391391 30.8652 1.56092
392392 0 0
393393 16.7759 0.846233
394394 0 0
395395 − 2.93130i − 0.147490i
396396 0 0
397397 29.9901i 1.50516i 0.658500 + 0.752581i 0.271191π0.271191\pi
−0.658500 + 0.752581i 0.728809π0.728809\pi
398398 0 0
399399 28.2750 1.41552
400400 0 0
401401 −20.2298 −1.01023 −0.505114 0.863052i 0.668550π-0.668550\pi
−0.505114 + 0.863052i 0.668550π0.668550\pi
402402 0 0
403403 − 13.4756i − 0.671269i
404404 0 0
405405 − 1.80886i − 0.0898829i
406406 0 0
407407 0 0
408408 0 0
409409 −4.43720 −0.219405 −0.109703 0.993964i 0.534990π-0.534990\pi
−0.109703 + 0.993964i 0.534990π0.534990\pi
410410 0 0
411411 6.86162i 0.338459i
412412 0 0
413413 − 4.46935i − 0.219922i
414414 0 0
415415 1.87895 0.0922342
416416 0 0
417417 −21.7990 −1.06750
418418 0 0
419419 6.01641i 0.293921i 0.989142 + 0.146960i 0.0469490π0.0469490\pi
−0.989142 + 0.146960i 0.953051π0.953051\pi
420420 0 0
421421 − 27.4541i − 1.33803i −0.743248 0.669016i 0.766716π-0.766716\pi
0.743248 0.669016i 0.233284π-0.233284\pi
422422 0 0
423423 14.2405 0.692397
424424 0 0
425425 16.5479 0.802689
426426 0 0
427427 15.0036i 0.726077i
428428 0 0
429429 0 0
430430 0 0
431431 −24.9012 −1.19945 −0.599723 0.800207i 0.704723π-0.704723\pi
−0.599723 + 0.800207i 0.704723π0.704723\pi
432432 0 0
433433 13.5442 0.650892 0.325446 0.945561i 0.394486π-0.394486\pi
0.325446 + 0.945561i 0.394486π0.394486\pi
434434 0 0
435435 3.03854i 0.145687i
436436 0 0
437437 45.5449i 2.17871i
438438 0 0
439439 −30.1967 −1.44121 −0.720606 0.693345i 0.756136π-0.756136\pi
−0.720606 + 0.693345i 0.756136π0.756136\pi
440440 0 0
441441 4.47525 0.213107
442442 0 0
443443 13.9387i 0.662247i 0.943587 + 0.331124i 0.107428π0.107428\pi
−0.943587 + 0.331124i 0.892572π0.892572\pi
444444 0 0
445445 1.02468i 0.0485745i
446446 0 0
447447 −29.4874 −1.39471
448448 0 0
449449 7.05742 0.333060 0.166530 0.986036i 0.446744π-0.446744\pi
0.166530 + 0.986036i 0.446744π0.446744\pi
450450 0 0
451451 0 0
452452 0 0
453453 12.9661i 0.609200i
454454 0 0
455455 −0.767408 −0.0359767
456456 0 0
457457 −6.26928 −0.293265 −0.146632 0.989191i 0.546843π-0.546843\pi
−0.146632 + 0.989191i 0.546843π0.546843\pi
458458 0 0
459459 0.0625011i 0.00291730i
460460 0 0
461461 18.0857i 0.842334i 0.906983 + 0.421167i 0.138379π0.138379\pi
−0.906983 + 0.421167i 0.861621π0.861621\pi
462462 0 0
463463 −9.95458 −0.462628 −0.231314 0.972879i 0.574303π-0.574303\pi
−0.231314 + 0.972879i 0.574303π0.574303\pi
464464 0 0
465465 −4.05316 −0.187961
466466 0 0
467467 32.6180i 1.50938i 0.656082 + 0.754690i 0.272213π0.272213\pi
−0.656082 + 0.754690i 0.727787π0.727787\pi
468468 0 0
469469 − 19.4109i − 0.896311i
470470 0 0
471471 −9.67052 −0.445594
472472 0 0
473473 0 0
474474 0 0
475475 24.4181i 1.12038i
476476 0 0
477477 − 26.2179i − 1.20044i
478478 0 0
479479 8.51155 0.388903 0.194451 0.980912i 0.437707π-0.437707\pi
0.194451 + 0.980912i 0.437707π0.437707\pi
480480 0 0
481481 −2.08853 −0.0952287
482482 0 0
483483 − 53.1310i − 2.41754i
484484 0 0
485485 0.0600903i 0.00272856i
486486 0 0
487487 −7.13504 −0.323319 −0.161660 0.986847i 0.551685π-0.551685\pi
−0.161660 + 0.986847i 0.551685π0.551685\pi
488488 0 0
489489 −39.3108 −1.77770
490490 0 0
491491 − 12.1001i − 0.546069i −0.962004 0.273035i 0.911973π-0.911973\pi
0.962004 0.273035i 0.0880274π-0.0880274\pi
492492 0 0
493493 − 20.6578i − 0.930382i
494494 0 0
495495 0 0
496496 0 0
497497 −2.92883 −0.131376
498498 0 0
499499 − 14.0553i − 0.629200i −0.949224 0.314600i 0.898130π-0.898130\pi
0.949224 0.314600i 0.101870π-0.101870\pi
500500 0 0
501501 22.7152i 1.01484i
502502 0 0
503503 −27.5369 −1.22781 −0.613906 0.789379i 0.710403π-0.710403\pi
−0.613906 + 0.789379i 0.710403π0.710403\pi
504504 0 0
505505 −3.01109 −0.133992
506506 0 0
507507 25.3064i 1.12390i
508508 0 0
509509 0.301098i 0.0133459i 0.999978 + 0.00667297i 0.00212409π0.00212409\pi
−0.999978 + 0.00667297i 0.997876π0.997876\pi
510510 0 0
511511 16.1771 0.715634
512512 0 0
513513 −0.0922270 −0.00407192
514514 0 0
515515 − 0.566299i − 0.0249541i
516516 0 0
517517 0 0
518518 0 0
519519 21.6451 0.950114
520520 0 0
521521 −16.6902 −0.731210 −0.365605 0.930770i 0.619138π-0.619138\pi
−0.365605 + 0.930770i 0.619138π0.619138\pi
522522 0 0
523523 5.73532i 0.250788i 0.992107 + 0.125394i 0.0400195π0.0400195\pi
−0.992107 + 0.125394i 0.959981π0.959981\pi
524524 0 0
525525 − 28.4852i − 1.24320i
526526 0 0
527527 27.5559 1.20035
528528 0 0
529529 62.5827 2.72099
530530 0 0
531531 − 5.70033i − 0.247373i
532532 0 0
533533 − 9.83940i − 0.426192i
534534 0 0
535535 −0.179094 −0.00774293
536536 0 0
537537 −26.0799 −1.12543
538538 0 0
539539 0 0
540540 0 0
541541 − 24.1196i − 1.03698i −0.855083 0.518491i 0.826494π-0.826494\pi
0.855083 0.518491i 0.173506π-0.173506\pi
542542 0 0
543543 32.8425 1.40941
544544 0 0
545545 −0.271278 −0.0116203
546546 0 0
547547 − 7.39628i − 0.316242i −0.987420 0.158121i 0.949456π-0.949456\pi
0.987420 0.158121i 0.0505436π-0.0505436\pi
548548 0 0
549549 19.1360i 0.816707i
550550 0 0
551551 30.4828 1.29861
552552 0 0
553553 34.3051 1.45880
554554 0 0
555555 0.628182i 0.0266648i
556556 0 0
557557 11.4190i 0.483839i 0.970296 + 0.241920i 0.0777770π0.0777770\pi
−0.970296 + 0.241920i 0.922223π0.922223\pi
558558 0 0
559559 4.03304 0.170579
560560 0 0
561561 0 0
562562 0 0
563563 − 9.71580i − 0.409472i −0.978817 0.204736i 0.934366π-0.934366\pi
0.978817 0.204736i 0.0656336π-0.0656336\pi
564564 0 0
565565 − 0.755537i − 0.0317857i
566566 0 0
567567 21.1691 0.889019
568568 0 0
569569 24.1045 1.01051 0.505257 0.862969i 0.331398π-0.331398\pi
0.505257 + 0.862969i 0.331398π0.331398\pi
570570 0 0
571571 12.8180i 0.536415i 0.963361 + 0.268207i 0.0864312π0.0864312\pi
−0.963361 + 0.268207i 0.913569π0.913569\pi
572572 0 0
573573 36.2756i 1.51543i
574574 0 0
575575 45.8837 1.91348
576576 0 0
577577 22.8507 0.951288 0.475644 0.879638i 0.342215π-0.342215\pi
0.475644 + 0.879638i 0.342215π0.342215\pi
578578 0 0
579579 10.9519i 0.455145i
580580 0 0
581581 21.9894i 0.912276i
582582 0 0
583583 0 0
584584 0 0
585585 −0.978773 −0.0404673
586586 0 0
587587 − 29.3027i − 1.20945i −0.796433 0.604726i 0.793283π-0.793283\pi
0.796433 0.604726i 0.206717π-0.206717\pi
588588 0 0
589589 40.6616i 1.67543i
590590 0 0
591591 49.7787 2.04762
592592 0 0
593593 −10.3694 −0.425820 −0.212910 0.977072i 0.568294π-0.568294\pi
−0.212910 + 0.977072i 0.568294π0.568294\pi
594594 0 0
595595 − 1.56925i − 0.0643329i
596596 0 0
597597 − 25.4933i − 1.04337i
598598 0 0
599599 20.8591 0.852279 0.426140 0.904657i 0.359873π-0.359873\pi
0.426140 + 0.904657i 0.359873π0.359873\pi
600600 0 0
601601 −39.2013 −1.59906 −0.799528 0.600629i 0.794917π-0.794917\pi
−0.799528 + 0.600629i 0.794917π0.794917\pi
602602 0 0
603603 − 24.7571i − 1.00819i
604604 0 0
605605 0 0
606606 0 0
607607 −26.6834 −1.08305 −0.541523 0.840686i 0.682152π-0.682152\pi
−0.541523 + 0.840686i 0.682152π0.682152\pi
608608 0 0
609609 −35.5601 −1.44097
610610 0 0
611611 7.76470i 0.314126i
612612 0 0
613613 30.7684i 1.24272i 0.783523 + 0.621362i 0.213420π0.213420\pi
−0.783523 + 0.621362i 0.786580π0.786580\pi
614614 0 0
615615 −2.95947 −0.119337
616616 0 0
617617 10.0183 0.403323 0.201662 0.979455i 0.435366π-0.435366\pi
0.201662 + 0.979455i 0.435366π0.435366\pi
618618 0 0
619619 − 32.0971i − 1.29009i −0.764144 0.645046i 0.776838π-0.776838\pi
0.764144 0.645046i 0.223162π-0.223162\pi
620620 0 0
621621 0.173302i 0.00695438i
622622 0 0
623623 −11.9919 −0.480444
624624 0 0
625625 24.3988 0.975951
626626 0 0
627627 0 0
628628 0 0
629629 − 4.27076i − 0.170286i
630630 0 0
631631 2.80016 0.111472 0.0557362 0.998446i 0.482249π-0.482249\pi
0.0557362 + 0.998446i 0.482249π0.482249\pi
632632 0 0
633633 −45.8443 −1.82215
634634 0 0
635635 1.47403i 0.0584952i
636636 0 0
637637 2.44015i 0.0966823i
638638 0 0
639639 −3.73551 −0.147775
640640 0 0
641641 16.8783 0.666652 0.333326 0.942812i 0.391829π-0.391829\pi
0.333326 + 0.942812i 0.391829π0.391829\pi
642642 0 0
643643 − 49.0739i − 1.93528i −0.252326 0.967642i 0.581196π-0.581196\pi
0.252326 0.967642i 0.418804π-0.418804\pi
644644 0 0
645645 − 1.21305i − 0.0477637i
646646 0 0
647647 35.3413 1.38941 0.694705 0.719295i 0.255535π-0.255535\pi
0.694705 + 0.719295i 0.255535π0.255535\pi
648648 0 0
649649 0 0
650650 0 0
651651 − 47.4343i − 1.85910i
652652 0 0
653653 − 0.192213i − 0.00752186i −0.999993 0.00376093i 0.998803π-0.998803\pi
0.999993 0.00376093i 0.00119714π-0.00119714\pi
654654 0 0
655655 1.37387 0.0536816
656656 0 0
657657 20.6328 0.804960
658658 0 0
659659 46.4826i 1.81071i 0.424660 + 0.905353i 0.360394π0.360394\pi
−0.424660 + 0.905353i 0.639606π0.639606\pi
660660 0 0
661661 − 24.0904i − 0.937007i −0.883462 0.468503i 0.844793π-0.844793\pi
0.883462 0.468503i 0.155207π-0.155207\pi
662662 0 0
663663 13.3256 0.517523
664664 0 0
665665 2.31559 0.0897948
666666 0 0
667667 − 57.2798i − 2.21788i
668668 0 0
669669 − 35.6843i − 1.37963i
670670 0 0
671671 0 0
672672 0 0
673673 7.57085 0.291835 0.145917 0.989297i 0.453387π-0.453387\pi
0.145917 + 0.989297i 0.453387π0.453387\pi
674674 0 0
675675 0.0929129i 0.00357622i
676676 0 0
677677 20.6521i 0.793725i 0.917878 + 0.396862i 0.129901π0.129901\pi
−0.917878 + 0.396862i 0.870099π0.870099\pi
678678 0 0
679679 −0.703239 −0.0269878
680680 0 0
681681 10.2371 0.392287
682682 0 0
683683 14.6272i 0.559694i 0.960045 + 0.279847i 0.0902837π0.0902837\pi
−0.960045 + 0.279847i 0.909716π0.909716\pi
684684 0 0
685685 0.561935i 0.0214704i
686686 0 0
687687 −56.8928 −2.17059
688688 0 0
689689 14.2954 0.544613
690690 0 0
691691 − 22.9427i − 0.872781i −0.899757 0.436390i 0.856257π-0.856257\pi
0.899757 0.436390i 0.143743π-0.143743\pi
692692 0 0
693693 0 0
694694 0 0
695695 −1.78524 −0.0677181
696696 0 0
697697 20.1203 0.762109
698698 0 0
699699 34.2280i 1.29462i
700700 0 0
701701 − 0.700778i − 0.0264680i −0.999912 0.0132340i 0.995787π-0.995787\pi
0.999912 0.0132340i 0.00421264π-0.00421264\pi
702702 0 0
703703 6.30196 0.237683
704704 0 0
705705 2.33545 0.0879580
706706 0 0
707707 − 35.2388i − 1.32529i
708708 0 0
709709 4.05276i 0.152205i 0.997100 + 0.0761023i 0.0242476π0.0242476\pi
−0.997100 + 0.0761023i 0.975752π0.975752\pi
710710 0 0
711711 43.7537 1.64089
712712 0 0
713713 76.4065 2.86145
714714 0 0
715715 0 0
716716 0 0
717717 − 58.5943i − 2.18824i
718718 0 0
719719 −10.0908 −0.376323 −0.188161 0.982138i 0.560253π-0.560253\pi
−0.188161 + 0.982138i 0.560253π0.560253\pi
720720 0 0
721721 6.62741 0.246818
722722 0 0
723723 64.0970i 2.38379i
724724 0 0
725725 − 30.7095i − 1.14052i
726726 0 0
727727 13.6615 0.506675 0.253338 0.967378i 0.418472π-0.418472\pi
0.253338 + 0.967378i 0.418472π0.418472\pi
728728 0 0
729729 26.8621 0.994892
730730 0 0
731731 8.24703i 0.305027i
732732 0 0
733733 − 17.9204i − 0.661906i −0.943647 0.330953i 0.892630π-0.892630\pi
0.943647 0.330953i 0.107370π-0.107370\pi
734734 0 0
735735 0.733942 0.0270719
736736 0 0
737737 0 0
738738 0 0
739739 − 23.5590i − 0.866631i −0.901242 0.433316i 0.857344π-0.857344\pi
0.901242 0.433316i 0.142656π-0.142656\pi
740740 0 0
741741 19.6633i 0.722351i
742742 0 0
743743 −13.6295 −0.500018 −0.250009 0.968244i 0.580434π-0.580434\pi
−0.250009 + 0.968244i 0.580434π0.580434\pi
744744 0 0
745745 −2.41489 −0.0884746
746746 0 0
747747 28.0459i 1.02615i
748748 0 0
749749 − 2.09595i − 0.0765842i
750750 0 0
751751 12.2314 0.446331 0.223165 0.974781i 0.428361π-0.428361\pi
0.223165 + 0.974781i 0.428361π0.428361\pi
752752 0 0
753753 47.1868 1.71958
754754 0 0
755755 1.06186i 0.0386452i
756756 0 0
757757 21.3405i 0.775634i 0.921736 + 0.387817i 0.126771π0.126771\pi
−0.921736 + 0.387817i 0.873229π0.873229\pi
758758 0 0
759759 0 0
760760 0 0
761761 −11.8300 −0.428839 −0.214419 0.976742i 0.568786π-0.568786\pi
−0.214419 + 0.976742i 0.568786π0.568786\pi
762762 0 0
763763 − 3.17478i − 0.114935i
764764 0 0
765765 − 2.00146i − 0.0723629i
766766 0 0
767767 3.10813 0.112228
768768 0 0
769769 −2.94327 −0.106137 −0.0530685 0.998591i 0.516900π-0.516900\pi
−0.0530685 + 0.998591i 0.516900π0.516900\pi
770770 0 0
771771 18.0369i 0.649583i
772772 0 0
773773 7.95495i 0.286120i 0.989714 + 0.143060i 0.0456942π0.0456942\pi
−0.989714 + 0.143060i 0.954306π0.954306\pi
774774 0 0
775775 40.9640 1.47147
776776 0 0
777777 −7.35163 −0.263738
778778 0 0
779779 29.6896i 1.06374i
780780 0 0
781781 0 0
782782 0 0
783783 0.115990 0.00414513
784784 0 0
785785 −0.791972 −0.0282667
786786 0 0
787787 2.72311i 0.0970685i 0.998822 + 0.0485342i 0.0154550π0.0154550\pi
−0.998822 + 0.0485342i 0.984545π0.984545\pi
788788 0 0
789789 6.59089i 0.234642i
790790 0 0
791791 8.84207 0.314388
792792 0 0
793793 −10.4340 −0.370523
794794 0 0
795795 − 4.29975i − 0.152496i
796796 0 0
797797 − 28.0588i − 0.993893i −0.867781 0.496947i 0.834454π-0.834454\pi
0.867781 0.496947i 0.165546π-0.165546\pi
798798 0 0
799799 −15.8778 −0.561715
800800 0 0
801801 −15.2947 −0.540413
802802 0 0
803803 0 0
804804 0 0
805805 − 4.35119i − 0.153359i
806806 0 0
807807 −38.0826 −1.34057
808808 0 0
809809 32.5279 1.14362 0.571810 0.820386i 0.306242π-0.306242\pi
0.571810 + 0.820386i 0.306242π0.306242\pi
810810 0 0
811811 − 8.90533i − 0.312708i −0.987701 0.156354i 0.950026π-0.950026\pi
0.987701 0.156354i 0.0499741π-0.0499741\pi
812812 0 0
813813 − 2.28648i − 0.0801904i
814814 0 0
815815 −3.21938 −0.112770
816816 0 0
817817 −12.1694 −0.425752
818818 0 0
819819 − 11.4546i − 0.400256i
820820 0 0
821821 − 14.3875i − 0.502126i −0.967971 0.251063i 0.919220π-0.919220\pi
0.967971 0.251063i 0.0807801π-0.0807801\pi
822822 0 0
823823 35.3163 1.23105 0.615525 0.788117i 0.288944π-0.288944\pi
0.615525 + 0.788117i 0.288944π0.288944\pi
824824 0 0
825825 0 0
826826 0 0
827827 − 12.8333i − 0.446257i −0.974789 0.223129i 0.928373π-0.928373\pi
0.974789 0.223129i 0.0716270π-0.0716270\pi
828828 0 0
829829 − 23.8928i − 0.829831i −0.909860 0.414916i 0.863811π-0.863811\pi
0.909860 0.414916i 0.136189π-0.136189\pi
830830 0 0
831831 −33.1947 −1.15151
832832 0 0
833833 −4.98978 −0.172886
834834 0 0
835835 1.86027i 0.0643773i
836836 0 0
837837 0.154721i 0.00534793i
838838 0 0
839839 −23.6213 −0.815497 −0.407748 0.913094i 0.633686π-0.633686\pi
−0.407748 + 0.913094i 0.633686π0.633686\pi
840840 0 0
841841 −9.33683 −0.321960
842842 0 0
843843 38.0585i 1.31080i
844844 0 0
845845 2.07248i 0.0712956i
846846 0 0
847847 0 0
848848 0 0
849849 5.73697 0.196892
850850 0 0
851851 − 11.8419i − 0.405935i
852852 0 0
853853 − 41.7017i − 1.42784i −0.700228 0.713919i 0.746918π-0.746918\pi
0.700228 0.713919i 0.253082π-0.253082\pi
854854 0 0
855855 2.95337 0.101003
856856 0 0
857857 4.35256 0.148680 0.0743402 0.997233i 0.476315π-0.476315\pi
0.0743402 + 0.997233i 0.476315π0.476315\pi
858858 0 0
859859 7.91648i 0.270107i 0.990838 + 0.135053i 0.0431206π0.0431206\pi
−0.990838 + 0.135053i 0.956879π0.956879\pi
860860 0 0
861861 − 34.6347i − 1.18035i
862862 0 0
863863 12.3382 0.419996 0.209998 0.977702i 0.432654π-0.432654\pi
0.209998 + 0.977702i 0.432654π0.432654\pi
864864 0 0
865865 1.77263 0.0602714
866866 0 0
867867 − 14.3657i − 0.487884i
868868 0 0
869869 0 0
870870 0 0
871871 13.4990 0.457395
872872 0 0
873873 −0.896929 −0.0303565
874874 0 0
875875 − 4.68453i − 0.158366i
876876 0 0
877877 − 58.3261i − 1.96953i −0.173887 0.984766i 0.555633π-0.555633\pi
0.173887 0.984766i 0.444367π-0.444367\pi
878878 0 0
879879 −45.0289 −1.51879
880880 0 0
881881 −25.8106 −0.869581 −0.434791 0.900532i 0.643178π-0.643178\pi
−0.434791 + 0.900532i 0.643178π0.643178\pi
882882 0 0
883883 36.6024i 1.23177i 0.787836 + 0.615885i 0.211201π0.211201\pi
−0.787836 + 0.615885i 0.788799π0.788799\pi
884884 0 0
885885 − 0.934857i − 0.0314249i
886886 0 0
887887 21.8922 0.735067 0.367534 0.930010i 0.380202π-0.380202\pi
0.367534 + 0.930010i 0.380202π0.380202\pi
888888 0 0
889889 −17.2506 −0.578568
890890 0 0
891891 0 0
892892 0 0
893893 − 23.4294i − 0.784033i
894894 0 0
895895 −2.13583 −0.0713929
896896 0 0
897897 36.9490 1.23369
898898 0 0
899899 − 51.1382i − 1.70555i
900900 0 0
901901 29.2323i 0.973869i
902902 0 0
903903 14.1963 0.472424
904904 0 0
905905 2.68965 0.0894071
906906 0 0
907907 − 28.8065i − 0.956503i −0.878223 0.478252i 0.841271π-0.841271\pi
0.878223 0.478252i 0.158729π-0.158729\pi
908908 0 0
909909 − 44.9446i − 1.49072i
910910 0 0
911911 −44.2181 −1.46501 −0.732506 0.680760i 0.761649π-0.761649\pi
−0.732506 + 0.680760i 0.761649π0.761649\pi
912912 0 0
913913 0 0
914914 0 0
915915 3.13832i 0.103750i
916916 0 0
917917 16.0785i 0.530957i
918918 0 0
919919 −18.9997 −0.626743 −0.313372 0.949631i 0.601459π-0.601459\pi
−0.313372 + 0.949631i 0.601459π0.601459\pi
920920 0 0
921921 −49.8652 −1.64311
922922 0 0
923923 − 2.03681i − 0.0670423i
924924 0 0
925925 − 6.34883i − 0.208748i
926926 0 0
927927 8.45277 0.277626
928928 0 0
929929 28.0670 0.920850 0.460425 0.887699i 0.347697π-0.347697\pi
0.460425 + 0.887699i 0.347697π0.347697\pi
930930 0 0
931931 − 7.36295i − 0.241311i
932932 0 0
933933 − 53.1411i − 1.73976i
934934 0 0
935935 0 0
936936 0 0
937937 −0.293629 −0.00959245 −0.00479623 0.999988i 0.501527π-0.501527\pi
−0.00479623 + 0.999988i 0.501527π0.501527\pi
938938 0 0
939939 65.6715i 2.14311i
940940 0 0
941941 16.1292i 0.525797i 0.964823 + 0.262899i 0.0846785π0.0846785\pi
−0.964823 + 0.262899i 0.915322π0.915322\pi
942942 0 0
943943 55.7892 1.81675
944944 0 0
945945 0.00881101 0.000286622 0
946946 0 0
947947 29.0812i 0.945011i 0.881328 + 0.472505i 0.156650π0.156650\pi
−0.881328 + 0.472505i 0.843350π0.843350\pi
948948 0 0
949949 11.2501i 0.365194i
950950 0 0
951951 −9.32680 −0.302442
952952 0 0
953953 −40.5658 −1.31405 −0.657027 0.753867i 0.728186π-0.728186\pi
−0.657027 + 0.753867i 0.728186π0.728186\pi
954954 0 0
955955 2.97081i 0.0961330i
956956 0 0
957957 0 0
958958 0 0
959959 −6.57634 −0.212361
960960 0 0
961961 37.2141 1.20046
962962 0 0
963963 − 2.67323i − 0.0861435i
964964 0 0
965965 0.896909i 0.0288725i
966966 0 0
967967 6.42732 0.206689 0.103344 0.994646i 0.467046π-0.467046\pi
0.103344 + 0.994646i 0.467046π0.467046\pi
968968 0 0
969969 −40.2089 −1.29170
970970 0 0
971971 − 50.7088i − 1.62732i −0.581338 0.813662i 0.697471π-0.697471\pi
0.581338 0.813662i 0.302529π-0.302529\pi
972972 0 0
973973 − 20.8927i − 0.669790i
974974 0 0
975975 19.8096 0.634414
976976 0 0
977977 −0.100545 −0.00321673 −0.00160837 0.999999i 0.500512π-0.500512\pi
−0.00160837 + 0.999999i 0.500512π0.500512\pi
978978 0 0
979979 0 0
980980 0 0
981981 − 4.04919i − 0.129281i
982982 0 0
983983 −26.3392 −0.840091 −0.420046 0.907503i 0.637986π-0.637986\pi
−0.420046 + 0.907503i 0.637986π0.637986\pi
984984 0 0
985985 4.07665 0.129893
986986 0 0
987987 27.3318i 0.869980i
988988 0 0
989989 22.8672i 0.727136i
990990 0 0
991991 27.9640 0.888306 0.444153 0.895951i 0.353505π-0.353505\pi
0.444153 + 0.895951i 0.353505π0.353505\pi
992992 0 0
993993 69.1050 2.19298
994994 0 0
995995 − 2.08778i − 0.0661871i
996996 0 0
997997 − 57.2928i − 1.81448i −0.420612 0.907241i 0.638185π-0.638185\pi
0.420612 0.907241i 0.361815π-0.361815\pi
998998 0 0
999999 0.0239795 0.000758677 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3872.2.c.i.1937.17 20
4.3 odd 2 968.2.c.i.485.7 20
8.3 odd 2 968.2.c.i.485.8 20
8.5 even 2 inner 3872.2.c.i.1937.4 20
11.2 odd 10 352.2.w.a.81.9 40
11.6 odd 10 352.2.w.a.113.2 40
11.10 odd 2 3872.2.c.h.1937.17 20
44.3 odd 10 968.2.o.d.493.1 40
44.7 even 10 968.2.o.j.269.2 40
44.15 odd 10 968.2.o.d.269.9 40
44.19 even 10 968.2.o.j.493.10 40
44.27 odd 10 968.2.o.i.245.9 40
44.31 odd 10 968.2.o.i.565.4 40
44.35 even 10 88.2.o.a.37.7 yes 40
44.39 even 10 88.2.o.a.69.2 yes 40
44.43 even 2 968.2.c.h.485.14 20
88.3 odd 10 968.2.o.d.493.9 40
88.13 odd 10 352.2.w.a.81.2 40
88.19 even 10 968.2.o.j.493.2 40
88.21 odd 2 3872.2.c.h.1937.4 20
88.27 odd 10 968.2.o.i.245.4 40
88.35 even 10 88.2.o.a.37.2 40
88.43 even 2 968.2.c.h.485.13 20
88.51 even 10 968.2.o.j.269.10 40
88.59 odd 10 968.2.o.d.269.1 40
88.61 odd 10 352.2.w.a.113.9 40
88.75 odd 10 968.2.o.i.565.9 40
88.83 even 10 88.2.o.a.69.7 yes 40
132.35 odd 10 792.2.br.b.37.4 40
132.83 odd 10 792.2.br.b.685.9 40
264.35 odd 10 792.2.br.b.37.9 40
264.83 odd 10 792.2.br.b.685.4 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
88.2.o.a.37.2 40 88.35 even 10
88.2.o.a.37.7 yes 40 44.35 even 10
88.2.o.a.69.2 yes 40 44.39 even 10
88.2.o.a.69.7 yes 40 88.83 even 10
352.2.w.a.81.2 40 88.13 odd 10
352.2.w.a.81.9 40 11.2 odd 10
352.2.w.a.113.2 40 11.6 odd 10
352.2.w.a.113.9 40 88.61 odd 10
792.2.br.b.37.4 40 132.35 odd 10
792.2.br.b.37.9 40 264.35 odd 10
792.2.br.b.685.4 40 264.83 odd 10
792.2.br.b.685.9 40 132.83 odd 10
968.2.c.h.485.13 20 88.43 even 2
968.2.c.h.485.14 20 44.43 even 2
968.2.c.i.485.7 20 4.3 odd 2
968.2.c.i.485.8 20 8.3 odd 2
968.2.o.d.269.1 40 88.59 odd 10
968.2.o.d.269.9 40 44.15 odd 10
968.2.o.d.493.1 40 44.3 odd 10
968.2.o.d.493.9 40 88.3 odd 10
968.2.o.i.245.4 40 88.27 odd 10
968.2.o.i.245.9 40 44.27 odd 10
968.2.o.i.565.4 40 44.31 odd 10
968.2.o.i.565.9 40 88.75 odd 10
968.2.o.j.269.2 40 44.7 even 10
968.2.o.j.269.10 40 88.51 even 10
968.2.o.j.493.2 40 88.19 even 10
968.2.o.j.493.10 40 44.19 even 10
3872.2.c.h.1937.4 20 88.21 odd 2
3872.2.c.h.1937.17 20 11.10 odd 2
3872.2.c.i.1937.4 20 8.5 even 2 inner
3872.2.c.i.1937.17 20 1.1 even 1 trivial