L(s) = 1 | + 2.44i·3-s + 0.200i·5-s − 2.34·7-s − 2.99·9-s − 1.63i·13-s − 0.490·15-s + 3.33·17-s + 4.92i·19-s − 5.74i·21-s + 9.25·23-s + 4.95·25-s + 0.0187i·27-s − 6.19i·29-s + 8.25·31-s − 0.470i·35-s + ⋯ |
L(s) = 1 | + 1.41i·3-s + 0.0896i·5-s − 0.886·7-s − 0.997·9-s − 0.452i·13-s − 0.126·15-s + 0.809·17-s + 1.12i·19-s − 1.25i·21-s + 1.92·23-s + 0.991·25-s + 0.00360i·27-s − 1.14i·29-s + 1.48·31-s − 0.0795i·35-s + ⋯ |
Λ(s)=(=(3872s/2ΓC(s)L(s)(−0.460−0.887i)Λ(2−s)
Λ(s)=(=(3872s/2ΓC(s+1/2)L(s)(−0.460−0.887i)Λ(1−s)
Degree: |
2 |
Conductor: |
3872
= 25⋅112
|
Sign: |
−0.460−0.887i
|
Analytic conductor: |
30.9180 |
Root analytic conductor: |
5.56040 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3872(1937,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3872, ( :1/2), −0.460−0.887i)
|
Particular Values
L(1) |
≈ |
1.735273393 |
L(21) |
≈ |
1.735273393 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 11 | 1 |
good | 3 | 1−2.44iT−3T2 |
| 5 | 1−0.200iT−5T2 |
| 7 | 1+2.34T+7T2 |
| 13 | 1+1.63iT−13T2 |
| 17 | 1−3.33T+17T2 |
| 19 | 1−4.92iT−19T2 |
| 23 | 1−9.25T+23T2 |
| 29 | 1+6.19iT−29T2 |
| 31 | 1−8.25T+31T2 |
| 37 | 1+1.28iT−37T2 |
| 41 | 1−6.03T+41T2 |
| 43 | 1−2.47iT−43T2 |
| 47 | 1+4.75T+47T2 |
| 53 | 1−8.76iT−53T2 |
| 59 | 1−1.90iT−59T2 |
| 61 | 1+6.39iT−61T2 |
| 67 | 1−8.27iT−67T2 |
| 71 | 1−1.24T+71T2 |
| 73 | 1+6.89T+73T2 |
| 79 | 1+14.6T+79T2 |
| 83 | 1+9.37iT−83T2 |
| 89 | 1−5.11T+89T2 |
| 97 | 1−0.299T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.927927460168701049133121448405, −8.121605156716974550802924286271, −7.27397437679017290417707601487, −6.32731908730038543500743171228, −5.67213612949106150729717921875, −4.84657244703713285074725600707, −4.16326052534573386235827978771, −3.21287246999243114949563357912, −2.86398880180400874648921069394, −1.01792149932073417670137532645,
0.64651758553240247448092062488, 1.43592350844067539980809300216, 2.74650799214331671168817715862, 3.15365183197612233377950750041, 4.56648536146156241677488966266, 5.34393032233311443490062718877, 6.36226811192891505175994701007, 6.88150340957450235821382834622, 7.20072061904479536738483201083, 8.199992100355681390658070289998