Properties

Label 352.2.w.a.113.2
Level $352$
Weight $2$
Character 352.113
Analytic conductor $2.811$
Analytic rank $0$
Dimension $40$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [352,2,Mod(49,352)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(352, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([0, 5, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("352.49");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 352 = 2^{5} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 352.w (of order \(10\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.81073415115\)
Analytic rank: \(0\)
Dimension: \(40\)
Relative dimension: \(10\) over \(\Q(\zeta_{10})\)
Twist minimal: no (minimal twist has level 88)
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 113.2
Character \(\chi\) \(=\) 352.113
Dual form 352.2.w.a.81.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.32812 + 0.756451i) q^{3} +(0.117836 - 0.162187i) q^{5} +(0.725001 - 2.23132i) q^{7} +(2.42086 - 1.75886i) q^{9} +(1.47592 + 2.97013i) q^{11} +(-0.959026 - 1.31999i) q^{13} +(-0.151649 + 0.466727i) q^{15} +(2.69920 + 1.96108i) q^{17} +(4.68224 - 1.52135i) q^{19} +5.74321i q^{21} +9.25109 q^{23} +(1.53267 + 4.71706i) q^{25} +(0.0110111 - 0.0151554i) q^{27} +(5.88863 + 1.91333i) q^{29} +(-6.68182 + 4.85463i) q^{31} +(-5.68286 - 5.79835i) q^{33} +(-0.276461 - 0.380516i) q^{35} +(-1.21740 - 0.395559i) q^{37} +(3.23123 + 2.34763i) q^{39} +(-1.86354 - 5.73540i) q^{41} -2.47184i q^{43} -0.599888i q^{45} +(-1.47060 - 4.52605i) q^{47} +(1.20994 + 0.879070i) q^{49} +(-7.76750 - 2.52381i) q^{51} +(-5.14997 - 7.08833i) q^{53} +(0.655632 + 0.110613i) q^{55} +(-9.74997 + 7.08377i) q^{57} +(1.81173 + 0.588668i) q^{59} +(3.75888 - 5.17366i) q^{61} +(-2.16946 - 6.67690i) q^{63} -0.327092 q^{65} +8.27349i q^{67} +(-21.5376 + 6.99800i) q^{69} +(-1.00994 - 0.733765i) q^{71} +(2.13073 - 6.55770i) q^{73} +(-7.13645 - 9.82248i) q^{75} +(7.69737 - 1.13990i) q^{77} +(-11.8293 + 8.59451i) q^{79} +(-2.78823 + 8.58129i) q^{81} +(5.50905 - 7.58255i) q^{83} +(0.636123 - 0.206689i) q^{85} -15.1568 q^{87} +5.11129 q^{89} +(-3.64061 + 1.18291i) q^{91} +(11.8838 - 16.3566i) q^{93} +(0.304992 - 0.938668i) q^{95} +(-0.242496 + 0.176183i) q^{97} +(8.79702 + 4.59434i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q + 10 q^{7} + 18 q^{15} - 6 q^{17} + 8 q^{23} - 4 q^{25} + 6 q^{31} - 10 q^{33} + 34 q^{39} - 14 q^{41} + 6 q^{47} - 4 q^{49} + 2 q^{55} - 26 q^{57} - 60 q^{63} - 36 q^{65} - 22 q^{71} - 6 q^{73} - 74 q^{79}+ \cdots + 10 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/352\mathbb{Z}\right)^\times\).

\(n\) \(133\) \(287\) \(321\)
\(\chi(n)\) \(-1\) \(1\) \(e\left(\frac{4}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −2.32812 + 0.756451i −1.34414 + 0.436737i −0.890717 0.454559i \(-0.849797\pi\)
−0.453422 + 0.891296i \(0.649797\pi\)
\(4\) 0 0
\(5\) 0.117836 0.162187i 0.0526977 0.0725322i −0.781855 0.623460i \(-0.785726\pi\)
0.834553 + 0.550928i \(0.185726\pi\)
\(6\) 0 0
\(7\) 0.725001 2.23132i 0.274025 0.843361i −0.715451 0.698663i \(-0.753779\pi\)
0.989476 0.144699i \(-0.0462212\pi\)
\(8\) 0 0
\(9\) 2.42086 1.75886i 0.806953 0.586286i
\(10\) 0 0
\(11\) 1.47592 + 2.97013i 0.445005 + 0.895528i
\(12\) 0 0
\(13\) −0.959026 1.31999i −0.265986 0.366098i 0.655044 0.755591i \(-0.272650\pi\)
−0.921029 + 0.389493i \(0.872650\pi\)
\(14\) 0 0
\(15\) −0.151649 + 0.466727i −0.0391556 + 0.120508i
\(16\) 0 0
\(17\) 2.69920 + 1.96108i 0.654651 + 0.475632i 0.864852 0.502026i \(-0.167412\pi\)
−0.210201 + 0.977658i \(0.567412\pi\)
\(18\) 0 0
\(19\) 4.68224 1.52135i 1.07418 0.349022i 0.282065 0.959395i \(-0.408981\pi\)
0.792114 + 0.610373i \(0.208981\pi\)
\(20\) 0 0
\(21\) 5.74321i 1.25327i
\(22\) 0 0
\(23\) 9.25109 1.92899 0.964493 0.264108i \(-0.0850776\pi\)
0.964493 + 0.264108i \(0.0850776\pi\)
\(24\) 0 0
\(25\) 1.53267 + 4.71706i 0.306533 + 0.943412i
\(26\) 0 0
\(27\) 0.0110111 0.0151554i 0.00211908 0.00291667i
\(28\) 0 0
\(29\) 5.88863 + 1.91333i 1.09349 + 0.355297i 0.799595 0.600540i \(-0.205048\pi\)
0.293897 + 0.955837i \(0.405048\pi\)
\(30\) 0 0
\(31\) −6.68182 + 4.85463i −1.20009 + 0.871917i −0.994294 0.106678i \(-0.965979\pi\)
−0.205797 + 0.978595i \(0.565979\pi\)
\(32\) 0 0
\(33\) −5.68286 5.79835i −0.989259 1.00936i
\(34\) 0 0
\(35\) −0.276461 0.380516i −0.0467304 0.0643189i
\(36\) 0 0
\(37\) −1.21740 0.395559i −0.200140 0.0650295i 0.207232 0.978292i \(-0.433555\pi\)
−0.407372 + 0.913262i \(0.633555\pi\)
\(38\) 0 0
\(39\) 3.23123 + 2.34763i 0.517411 + 0.375921i
\(40\) 0 0
\(41\) −1.86354 5.73540i −0.291037 0.895718i −0.984524 0.175250i \(-0.943927\pi\)
0.693487 0.720469i \(-0.256073\pi\)
\(42\) 0 0
\(43\) 2.47184i 0.376952i −0.982078 0.188476i \(-0.939645\pi\)
0.982078 0.188476i \(-0.0603549\pi\)
\(44\) 0 0
\(45\) 0.599888i 0.0894261i
\(46\) 0 0
\(47\) −1.47060 4.52605i −0.214509 0.660192i −0.999188 0.0402894i \(-0.987172\pi\)
0.784679 0.619903i \(-0.212828\pi\)
\(48\) 0 0
\(49\) 1.20994 + 0.879070i 0.172848 + 0.125581i
\(50\) 0 0
\(51\) −7.76750 2.52381i −1.08767 0.353405i
\(52\) 0 0
\(53\) −5.14997 7.08833i −0.707403 0.973657i −0.999849 0.0173746i \(-0.994469\pi\)
0.292446 0.956282i \(-0.405531\pi\)
\(54\) 0 0
\(55\) 0.655632 + 0.110613i 0.0884054 + 0.0149151i
\(56\) 0 0
\(57\) −9.74997 + 7.08377i −1.29142 + 0.938268i
\(58\) 0 0
\(59\) 1.81173 + 0.588668i 0.235868 + 0.0766381i 0.424566 0.905397i \(-0.360427\pi\)
−0.188698 + 0.982035i \(0.560427\pi\)
\(60\) 0 0
\(61\) 3.75888 5.17366i 0.481276 0.662419i −0.497474 0.867479i \(-0.665739\pi\)
0.978749 + 0.205060i \(0.0657389\pi\)
\(62\) 0 0
\(63\) −2.16946 6.67690i −0.273326 0.841210i
\(64\) 0 0
\(65\) −0.327092 −0.0405708
\(66\) 0 0
\(67\) 8.27349i 1.01077i 0.862895 + 0.505384i \(0.168649\pi\)
−0.862895 + 0.505384i \(0.831351\pi\)
\(68\) 0 0
\(69\) −21.5376 + 6.99800i −2.59283 + 0.842460i
\(70\) 0 0
\(71\) −1.00994 0.733765i −0.119858 0.0870819i 0.526241 0.850335i \(-0.323601\pi\)
−0.646099 + 0.763253i \(0.723601\pi\)
\(72\) 0 0
\(73\) 2.13073 6.55770i 0.249383 0.767521i −0.745502 0.666503i \(-0.767790\pi\)
0.994885 0.101017i \(-0.0322098\pi\)
\(74\) 0 0
\(75\) −7.13645 9.82248i −0.824046 1.13420i
\(76\) 0 0
\(77\) 7.69737 1.13990i 0.877196 0.129904i
\(78\) 0 0
\(79\) −11.8293 + 8.59451i −1.33090 + 0.966958i −0.331177 + 0.943569i \(0.607446\pi\)
−0.999726 + 0.0233897i \(0.992554\pi\)
\(80\) 0 0
\(81\) −2.78823 + 8.58129i −0.309803 + 0.953476i
\(82\) 0 0
\(83\) 5.50905 7.58255i 0.604697 0.832293i −0.391432 0.920207i \(-0.628020\pi\)
0.996128 + 0.0879138i \(0.0280200\pi\)
\(84\) 0 0
\(85\) 0.636123 0.206689i 0.0689973 0.0224186i
\(86\) 0 0
\(87\) −15.1568 −1.62498
\(88\) 0 0
\(89\) 5.11129 0.541795 0.270898 0.962608i \(-0.412680\pi\)
0.270898 + 0.962608i \(0.412680\pi\)
\(90\) 0 0
\(91\) −3.64061 + 1.18291i −0.381640 + 0.124002i
\(92\) 0 0
\(93\) 11.8838 16.3566i 1.23229 1.69610i
\(94\) 0 0
\(95\) 0.304992 0.938668i 0.0312915 0.0963053i
\(96\) 0 0
\(97\) −0.242496 + 0.176183i −0.0246217 + 0.0178887i −0.600028 0.799979i \(-0.704844\pi\)
0.575406 + 0.817868i \(0.304844\pi\)
\(98\) 0 0
\(99\) 8.79702 + 4.59434i 0.884134 + 0.461749i
\(100\) 0 0
\(101\) 8.82844 + 12.1513i 0.878462 + 1.20910i 0.976844 + 0.213951i \(0.0686332\pi\)
−0.0983822 + 0.995149i \(0.531367\pi\)
\(102\) 0 0
\(103\) −0.872910 + 2.68654i −0.0860104 + 0.264713i −0.984807 0.173653i \(-0.944443\pi\)
0.898796 + 0.438366i \(0.144443\pi\)
\(104\) 0 0
\(105\) 0.931474 + 0.676756i 0.0909026 + 0.0660446i
\(106\) 0 0
\(107\) 0.849631 0.276062i 0.0821369 0.0266879i −0.267660 0.963513i \(-0.586250\pi\)
0.349797 + 0.936825i \(0.386250\pi\)
\(108\) 0 0
\(109\) 1.35318i 0.129611i −0.997898 0.0648057i \(-0.979357\pi\)
0.997898 0.0648057i \(-0.0206428\pi\)
\(110\) 0 0
\(111\) 3.13348 0.297417
\(112\) 0 0
\(113\) −1.16461 3.58429i −0.109557 0.337182i 0.881216 0.472714i \(-0.156726\pi\)
−0.990773 + 0.135532i \(0.956726\pi\)
\(114\) 0 0
\(115\) 1.09011 1.50041i 0.101653 0.139914i
\(116\) 0 0
\(117\) −4.64333 1.50871i −0.429276 0.139480i
\(118\) 0 0
\(119\) 6.33273 4.60099i 0.580520 0.421772i
\(120\) 0 0
\(121\) −6.64335 + 8.76732i −0.603940 + 0.797029i
\(122\) 0 0
\(123\) 8.67709 + 11.9430i 0.782387 + 1.07686i
\(124\) 0 0
\(125\) 1.89896 + 0.617009i 0.169848 + 0.0551870i
\(126\) 0 0
\(127\) 5.94849 + 4.32183i 0.527843 + 0.383500i 0.819550 0.573007i \(-0.194223\pi\)
−0.291707 + 0.956508i \(0.594223\pi\)
\(128\) 0 0
\(129\) 1.86983 + 5.75474i 0.164629 + 0.506677i
\(130\) 0 0
\(131\) 6.85311i 0.598759i 0.954134 + 0.299380i \(0.0967797\pi\)
−0.954134 + 0.299380i \(0.903220\pi\)
\(132\) 0 0
\(133\) 11.5506i 1.00156i
\(134\) 0 0
\(135\) −0.00116052 0.00357171i −9.98815e−5 0.000307404i
\(136\) 0 0
\(137\) −2.26770 1.64758i −0.193743 0.140762i 0.486685 0.873578i \(-0.338206\pi\)
−0.680428 + 0.732815i \(0.738206\pi\)
\(138\) 0 0
\(139\) −8.46925 2.75183i −0.718352 0.233407i −0.0730436 0.997329i \(-0.523271\pi\)
−0.645309 + 0.763922i \(0.723271\pi\)
\(140\) 0 0
\(141\) 6.84747 + 9.42474i 0.576661 + 0.793706i
\(142\) 0 0
\(143\) 2.50509 4.79662i 0.209486 0.401114i
\(144\) 0 0
\(145\) 1.00421 0.729601i 0.0833950 0.0605900i
\(146\) 0 0
\(147\) −3.48185 1.13132i −0.287178 0.0933098i
\(148\) 0 0
\(149\) −7.08039 + 9.74532i −0.580048 + 0.798368i −0.993701 0.112067i \(-0.964253\pi\)
0.413653 + 0.910435i \(0.364253\pi\)
\(150\) 0 0
\(151\) −1.63679 5.03752i −0.133200 0.409947i 0.862106 0.506728i \(-0.169145\pi\)
−0.995306 + 0.0967811i \(0.969145\pi\)
\(152\) 0 0
\(153\) 9.98363 0.807129
\(154\) 0 0
\(155\) 1.65575i 0.132993i
\(156\) 0 0
\(157\) −3.75714 + 1.22077i −0.299853 + 0.0974281i −0.455080 0.890451i \(-0.650389\pi\)
0.155227 + 0.987879i \(0.450389\pi\)
\(158\) 0 0
\(159\) 17.3517 + 12.6068i 1.37608 + 0.999781i
\(160\) 0 0
\(161\) 6.70705 20.6422i 0.528590 1.62683i
\(162\) 0 0
\(163\) −9.43913 12.9918i −0.739330 1.01760i −0.998657 0.0518106i \(-0.983501\pi\)
0.259327 0.965790i \(-0.416499\pi\)
\(164\) 0 0
\(165\) −1.61006 + 0.238433i −0.125343 + 0.0185620i
\(166\) 0 0
\(167\) 7.50715 5.45426i 0.580921 0.422064i −0.258135 0.966109i \(-0.583108\pi\)
0.839056 + 0.544045i \(0.183108\pi\)
\(168\) 0 0
\(169\) 3.19459 9.83193i 0.245738 0.756303i
\(170\) 0 0
\(171\) 8.65920 11.9184i 0.662186 0.911420i
\(172\) 0 0
\(173\) −8.40944 + 2.73239i −0.639358 + 0.207740i −0.610716 0.791850i \(-0.709118\pi\)
−0.0286420 + 0.999590i \(0.509118\pi\)
\(174\) 0 0
\(175\) 11.6365 0.879635
\(176\) 0 0
\(177\) −4.66323 −0.350510
\(178\) 0 0
\(179\) −10.1324 + 3.29223i −0.757334 + 0.246073i −0.662134 0.749385i \(-0.730349\pi\)
−0.0952002 + 0.995458i \(0.530349\pi\)
\(180\) 0 0
\(181\) −7.88600 + 10.8542i −0.586162 + 0.806783i −0.994354 0.106113i \(-0.966159\pi\)
0.408192 + 0.912896i \(0.366159\pi\)
\(182\) 0 0
\(183\) −4.83750 + 14.8883i −0.357598 + 1.10057i
\(184\) 0 0
\(185\) −0.207608 + 0.150836i −0.0152637 + 0.0110897i
\(186\) 0 0
\(187\) −1.84088 + 10.9113i −0.134618 + 0.797917i
\(188\) 0 0
\(189\) −0.0258337 0.0355570i −0.00187912 0.00258639i
\(190\) 0 0
\(191\) 4.57929 14.0936i 0.331346 1.01978i −0.637148 0.770741i \(-0.719886\pi\)
0.968494 0.249036i \(-0.0801139\pi\)
\(192\) 0 0
\(193\) 3.61949 + 2.62972i 0.260537 + 0.189291i 0.710384 0.703815i \(-0.248521\pi\)
−0.449847 + 0.893106i \(0.648521\pi\)
\(194\) 0 0
\(195\) 0.761509 0.247429i 0.0545328 0.0177188i
\(196\) 0 0
\(197\) 20.3350i 1.44881i 0.689373 + 0.724406i \(0.257886\pi\)
−0.689373 + 0.724406i \(0.742114\pi\)
\(198\) 0 0
\(199\) −10.4142 −0.738245 −0.369122 0.929381i \(-0.620342\pi\)
−0.369122 + 0.929381i \(0.620342\pi\)
\(200\) 0 0
\(201\) −6.25849 19.2616i −0.441440 1.35861i
\(202\) 0 0
\(203\) 8.53853 11.7523i 0.599287 0.824848i
\(204\) 0 0
\(205\) −1.14980 0.373592i −0.0803054 0.0260928i
\(206\) 0 0
\(207\) 22.3956 16.2714i 1.55660 1.13094i
\(208\) 0 0
\(209\) 11.4292 + 11.6615i 0.790574 + 0.806641i
\(210\) 0 0
\(211\) 11.0079 + 15.1511i 0.757817 + 1.04305i 0.997393 + 0.0721675i \(0.0229916\pi\)
−0.239576 + 0.970878i \(0.577008\pi\)
\(212\) 0 0
\(213\) 2.90632 + 0.944320i 0.199138 + 0.0647037i
\(214\) 0 0
\(215\) −0.400901 0.291271i −0.0273412 0.0198645i
\(216\) 0 0
\(217\) 5.98792 + 18.4289i 0.406486 + 1.25104i
\(218\) 0 0
\(219\) 16.8789i 1.14057i
\(220\) 0 0
\(221\) 5.44363i 0.366178i
\(222\) 0 0
\(223\) −4.50465 13.8639i −0.301654 0.928394i −0.980905 0.194488i \(-0.937695\pi\)
0.679251 0.733906i \(-0.262305\pi\)
\(224\) 0 0
\(225\) 12.0070 + 8.72360i 0.800467 + 0.581573i
\(226\) 0 0
\(227\) 3.97727 + 1.29229i 0.263981 + 0.0857725i 0.438017 0.898967i \(-0.355681\pi\)
−0.174036 + 0.984739i \(0.555681\pi\)
\(228\) 0 0
\(229\) −13.6608 18.8025i −0.902733 1.24251i −0.969588 0.244743i \(-0.921296\pi\)
0.0668544 0.997763i \(-0.478704\pi\)
\(230\) 0 0
\(231\) −17.0581 + 8.47650i −1.12234 + 0.557713i
\(232\) 0 0
\(233\) 11.3120 8.21868i 0.741077 0.538424i −0.151971 0.988385i \(-0.548562\pi\)
0.893048 + 0.449961i \(0.148562\pi\)
\(234\) 0 0
\(235\) −0.907356 0.294818i −0.0591894 0.0192318i
\(236\) 0 0
\(237\) 21.0387 28.9573i 1.36661 1.88098i
\(238\) 0 0
\(239\) 7.39672 + 22.7648i 0.478454 + 1.47253i 0.841242 + 0.540659i \(0.181825\pi\)
−0.362788 + 0.931872i \(0.618175\pi\)
\(240\) 0 0
\(241\) −26.1842 −1.68667 −0.843336 0.537387i \(-0.819412\pi\)
−0.843336 + 0.537387i \(0.819412\pi\)
\(242\) 0 0
\(243\) 22.0312i 1.41330i
\(244\) 0 0
\(245\) 0.285148 0.0926500i 0.0182174 0.00591919i
\(246\) 0 0
\(247\) −6.49855 4.72147i −0.413493 0.300420i
\(248\) 0 0
\(249\) −7.08988 + 21.8204i −0.449303 + 1.38281i
\(250\) 0 0
\(251\) 11.3303 + 15.5948i 0.715161 + 0.984335i 0.999671 + 0.0256619i \(0.00816933\pi\)
−0.284509 + 0.958673i \(0.591831\pi\)
\(252\) 0 0
\(253\) 13.6538 + 27.4769i 0.858409 + 1.72746i
\(254\) 0 0
\(255\) −1.32462 + 0.962392i −0.0829509 + 0.0602673i
\(256\) 0 0
\(257\) 2.27691 7.00760i 0.142030 0.437122i −0.854587 0.519308i \(-0.826190\pi\)
0.996617 + 0.0821853i \(0.0261899\pi\)
\(258\) 0 0
\(259\) −1.76524 + 2.42964i −0.109687 + 0.150971i
\(260\) 0 0
\(261\) 17.6208 5.72536i 1.09070 0.354391i
\(262\) 0 0
\(263\) −2.69244 −0.166023 −0.0830114 0.996549i \(-0.526454\pi\)
−0.0830114 + 0.996549i \(0.526454\pi\)
\(264\) 0 0
\(265\) −1.75649 −0.107900
\(266\) 0 0
\(267\) −11.8997 + 3.86644i −0.728248 + 0.236622i
\(268\) 0 0
\(269\) 9.14422 12.5859i 0.557533 0.767378i −0.433477 0.901164i \(-0.642714\pi\)
0.991010 + 0.133786i \(0.0427136\pi\)
\(270\) 0 0
\(271\) 0.288637 0.888332i 0.0175334 0.0539623i −0.941907 0.335874i \(-0.890968\pi\)
0.959440 + 0.281911i \(0.0909684\pi\)
\(272\) 0 0
\(273\) 7.58096 5.50789i 0.458821 0.333353i
\(274\) 0 0
\(275\) −11.7482 + 11.5142i −0.708443 + 0.694332i
\(276\) 0 0
\(277\) 7.97055 + 10.9705i 0.478904 + 0.659155i 0.978294 0.207223i \(-0.0664424\pi\)
−0.499390 + 0.866377i \(0.666442\pi\)
\(278\) 0 0
\(279\) −7.63715 + 23.5047i −0.457224 + 1.40719i
\(280\) 0 0
\(281\) 12.5780 + 9.13844i 0.750339 + 0.545153i 0.895932 0.444191i \(-0.146509\pi\)
−0.145593 + 0.989345i \(0.546509\pi\)
\(282\) 0 0
\(283\) −2.22890 + 0.724213i −0.132494 + 0.0430500i −0.374514 0.927221i \(-0.622190\pi\)
0.242019 + 0.970271i \(0.422190\pi\)
\(284\) 0 0
\(285\) 2.41604i 0.143114i
\(286\) 0 0
\(287\) −14.1486 −0.835166
\(288\) 0 0
\(289\) −1.81347 5.58129i −0.106675 0.328311i
\(290\) 0 0
\(291\) 0.431284 0.593612i 0.0252823 0.0347981i
\(292\) 0 0
\(293\) −17.4944 5.68428i −1.02203 0.332079i −0.250398 0.968143i \(-0.580562\pi\)
−0.771637 + 0.636064i \(0.780562\pi\)
\(294\) 0 0
\(295\) 0.308961 0.224474i 0.0179884 0.0130694i
\(296\) 0 0
\(297\) 0.0612651 + 0.0103362i 0.00355496 + 0.000599765i
\(298\) 0 0
\(299\) −8.87204 12.2113i −0.513083 0.706198i
\(300\) 0 0
\(301\) −5.51548 1.79209i −0.317907 0.103294i
\(302\) 0 0
\(303\) −29.7455 21.6114i −1.70883 1.24154i
\(304\) 0 0
\(305\) −0.396169 1.21928i −0.0226846 0.0698160i
\(306\) 0 0
\(307\) 20.3704i 1.16260i −0.813690 0.581299i \(-0.802545\pi\)
0.813690 0.581299i \(-0.197455\pi\)
\(308\) 0 0
\(309\) 6.91490i 0.393375i
\(310\) 0 0
\(311\) −6.70833 20.6461i −0.380395 1.17073i −0.939766 0.341818i \(-0.888957\pi\)
0.559372 0.828917i \(-0.311043\pi\)
\(312\) 0 0
\(313\) −21.7038 15.7687i −1.22677 0.891301i −0.230127 0.973161i \(-0.573914\pi\)
−0.996644 + 0.0818590i \(0.973914\pi\)
\(314\) 0 0
\(315\) −1.33855 0.434920i −0.0754185 0.0245050i
\(316\) 0 0
\(317\) −2.23951 3.08242i −0.125783 0.173126i 0.741481 0.670974i \(-0.234124\pi\)
−0.867264 + 0.497848i \(0.834124\pi\)
\(318\) 0 0
\(319\) 3.00828 + 20.3139i 0.168431 + 1.13736i
\(320\) 0 0
\(321\) −1.76921 + 1.28541i −0.0987478 + 0.0717445i
\(322\) 0 0
\(323\) 15.6218 + 5.07582i 0.869218 + 0.282426i
\(324\) 0 0
\(325\) 4.75659 6.54688i 0.263848 0.363156i
\(326\) 0 0
\(327\) 1.02362 + 3.15037i 0.0566061 + 0.174216i
\(328\) 0 0
\(329\) −11.1653 −0.615562
\(330\) 0 0
\(331\) 28.2300i 1.55166i −0.630941 0.775831i \(-0.717331\pi\)
0.630941 0.775831i \(-0.282669\pi\)
\(332\) 0 0
\(333\) −3.64290 + 1.18365i −0.199630 + 0.0648636i
\(334\) 0 0
\(335\) 1.34185 + 0.974912i 0.0733132 + 0.0532652i
\(336\) 0 0
\(337\) −6.34988 + 19.5429i −0.345900 + 1.06457i 0.615200 + 0.788371i \(0.289075\pi\)
−0.961100 + 0.276200i \(0.910925\pi\)
\(338\) 0 0
\(339\) 5.42269 + 7.46369i 0.294520 + 0.405372i
\(340\) 0 0
\(341\) −24.2807 12.6809i −1.31487 0.686707i
\(342\) 0 0
\(343\) 16.1252 11.7157i 0.870681 0.632587i
\(344\) 0 0
\(345\) −1.40292 + 4.31774i −0.0755306 + 0.232459i
\(346\) 0 0
\(347\) −2.21490 + 3.04855i −0.118902 + 0.163655i −0.864319 0.502944i \(-0.832250\pi\)
0.745417 + 0.666598i \(0.232250\pi\)
\(348\) 0 0
\(349\) −29.9260 + 9.72356i −1.60190 + 0.520490i −0.967577 0.252575i \(-0.918722\pi\)
−0.634326 + 0.773065i \(0.718722\pi\)
\(350\) 0 0
\(351\) −0.0305649 −0.00163143
\(352\) 0 0
\(353\) −30.7625 −1.63732 −0.818662 0.574276i \(-0.805284\pi\)
−0.818662 + 0.574276i \(0.805284\pi\)
\(354\) 0 0
\(355\) −0.238014 + 0.0773355i −0.0126325 + 0.00410454i
\(356\) 0 0
\(357\) −11.2629 + 15.5021i −0.596096 + 0.820456i
\(358\) 0 0
\(359\) 3.84845 11.8443i 0.203113 0.625118i −0.796672 0.604411i \(-0.793408\pi\)
0.999786 0.0207068i \(-0.00659164\pi\)
\(360\) 0 0
\(361\) 4.23752 3.07874i 0.223028 0.162039i
\(362\) 0 0
\(363\) 8.83443 25.4367i 0.463688 1.33508i
\(364\) 0 0
\(365\) −0.812498 1.11831i −0.0425281 0.0585349i
\(366\) 0 0
\(367\) 1.43633 4.42056i 0.0749757 0.230752i −0.906544 0.422110i \(-0.861289\pi\)
0.981520 + 0.191359i \(0.0612894\pi\)
\(368\) 0 0
\(369\) −14.5991 10.6069i −0.760000 0.552172i
\(370\) 0 0
\(371\) −19.5501 + 6.35221i −1.01499 + 0.329790i
\(372\) 0 0
\(373\) 18.0242i 0.933256i −0.884454 0.466628i \(-0.845469\pi\)
0.884454 0.466628i \(-0.154531\pi\)
\(374\) 0 0
\(375\) −4.88774 −0.252402
\(376\) 0 0
\(377\) −3.12178 9.60785i −0.160780 0.494829i
\(378\) 0 0
\(379\) −8.17433 + 11.2510i −0.419887 + 0.577925i −0.965595 0.260050i \(-0.916261\pi\)
0.545708 + 0.837975i \(0.316261\pi\)
\(380\) 0 0
\(381\) −17.1180 5.56198i −0.876983 0.284949i
\(382\) 0 0
\(383\) −18.2628 + 13.2687i −0.933184 + 0.677998i −0.946770 0.321910i \(-0.895675\pi\)
0.0135866 + 0.999908i \(0.495675\pi\)
\(384\) 0 0
\(385\) 0.722148 1.38273i 0.0368041 0.0704706i
\(386\) 0 0
\(387\) −4.34762 5.98398i −0.221002 0.304183i
\(388\) 0 0
\(389\) 22.3165 + 7.25108i 1.13149 + 0.367644i 0.814143 0.580665i \(-0.197207\pi\)
0.317349 + 0.948309i \(0.397207\pi\)
\(390\) 0 0
\(391\) 24.9705 + 18.1421i 1.26281 + 0.917487i
\(392\) 0 0
\(393\) −5.18404 15.9548i −0.261500 0.804816i
\(394\) 0 0
\(395\) 2.93130i 0.147490i
\(396\) 0 0
\(397\) 29.9901i 1.50516i 0.658500 + 0.752581i \(0.271191\pi\)
−0.658500 + 0.752581i \(0.728809\pi\)
\(398\) 0 0
\(399\) 8.73745 + 26.8911i 0.437419 + 1.34624i
\(400\) 0 0
\(401\) 16.3663 + 11.8908i 0.817292 + 0.593797i 0.915936 0.401325i \(-0.131450\pi\)
−0.0986435 + 0.995123i \(0.531450\pi\)
\(402\) 0 0
\(403\) 12.8161 + 4.16420i 0.638414 + 0.207433i
\(404\) 0 0
\(405\) 1.06322 + 1.46340i 0.0528318 + 0.0727168i
\(406\) 0 0
\(407\) −0.621926 4.19966i −0.0308277 0.208170i
\(408\) 0 0
\(409\) −3.58977 + 2.60812i −0.177503 + 0.128963i −0.672989 0.739652i \(-0.734990\pi\)
0.495486 + 0.868616i \(0.334990\pi\)
\(410\) 0 0
\(411\) 6.52578 + 2.12036i 0.321893 + 0.104589i
\(412\) 0 0
\(413\) 2.62702 3.61578i 0.129267 0.177921i
\(414\) 0 0
\(415\) −0.580629 1.78699i −0.0285019 0.0877200i
\(416\) 0 0
\(417\) 21.7990 1.06750
\(418\) 0 0
\(419\) 6.01641i 0.293921i 0.989142 + 0.146960i \(0.0469490\pi\)
−0.989142 + 0.146960i \(0.953051\pi\)
\(420\) 0 0
\(421\) 26.1104 8.48380i 1.27254 0.413475i 0.406596 0.913608i \(-0.366716\pi\)
0.865949 + 0.500133i \(0.166716\pi\)
\(422\) 0 0
\(423\) −11.5208 8.37035i −0.560161 0.406980i
\(424\) 0 0
\(425\) −5.11357 + 15.7379i −0.248044 + 0.763402i
\(426\) 0 0
\(427\) −8.81892 12.1382i −0.426777 0.587409i
\(428\) 0 0
\(429\) −2.20373 + 13.0621i −0.106397 + 0.630643i
\(430\) 0 0
\(431\) −20.1455 + 14.6365i −0.970373 + 0.705017i −0.955537 0.294873i \(-0.904723\pi\)
−0.0148364 + 0.999890i \(0.504723\pi\)
\(432\) 0 0
\(433\) 4.18538 12.8813i 0.201137 0.619035i −0.798713 0.601712i \(-0.794486\pi\)
0.999850 0.0173233i \(-0.00551447\pi\)
\(434\) 0 0
\(435\) −1.78601 + 2.45823i −0.0856326 + 0.117863i
\(436\) 0 0
\(437\) 43.3158 14.0742i 2.07208 0.673259i
\(438\) 0 0
\(439\) 30.1967 1.44121 0.720606 0.693345i \(-0.243864\pi\)
0.720606 + 0.693345i \(0.243864\pi\)
\(440\) 0 0
\(441\) 4.47525 0.213107
\(442\) 0 0
\(443\) −13.2565 + 4.30729i −0.629835 + 0.204646i −0.606502 0.795082i \(-0.707428\pi\)
−0.0233328 + 0.999728i \(0.507428\pi\)
\(444\) 0 0
\(445\) 0.602292 0.828984i 0.0285514 0.0392976i
\(446\) 0 0
\(447\) 9.11212 28.0442i 0.430988 1.32645i
\(448\) 0 0
\(449\) −5.70957 + 4.14825i −0.269451 + 0.195768i −0.714303 0.699836i \(-0.753256\pi\)
0.444852 + 0.895604i \(0.353256\pi\)
\(450\) 0 0
\(451\) 14.2844 13.9999i 0.672628 0.659231i
\(452\) 0 0
\(453\) 7.62127 + 10.4898i 0.358079 + 0.492853i
\(454\) 0 0
\(455\) −0.237142 + 0.729849i −0.0111174 + 0.0342158i
\(456\) 0 0
\(457\) −5.07195 3.68499i −0.237256 0.172377i 0.462804 0.886461i \(-0.346843\pi\)
−0.700060 + 0.714084i \(0.746843\pi\)
\(458\) 0 0
\(459\) 0.0594421 0.0193139i 0.00277452 0.000901496i
\(460\) 0 0
\(461\) 18.0857i 0.842334i −0.906983 0.421167i \(-0.861621\pi\)
0.906983 0.421167i \(-0.138379\pi\)
\(462\) 0 0
\(463\) −9.95458 −0.462628 −0.231314 0.972879i \(-0.574303\pi\)
−0.231314 + 0.972879i \(0.574303\pi\)
\(464\) 0 0
\(465\) −1.25250 3.85479i −0.0580831 0.178761i
\(466\) 0 0
\(467\) 19.1724 26.3885i 0.887191 1.22111i −0.0871856 0.996192i \(-0.527787\pi\)
0.974377 0.224922i \(-0.0722127\pi\)
\(468\) 0 0
\(469\) 18.4608 + 5.99829i 0.852442 + 0.276975i
\(470\) 0 0
\(471\) 7.82362 5.68419i 0.360493 0.261914i
\(472\) 0 0
\(473\) 7.34169 3.64823i 0.337571 0.167746i
\(474\) 0 0
\(475\) 14.3526 + 19.7547i 0.658543 + 0.906407i
\(476\) 0 0
\(477\) −24.9347 8.10178i −1.14168 0.370955i
\(478\) 0 0
\(479\) 6.88599 + 5.00296i 0.314629 + 0.228591i 0.733880 0.679279i \(-0.237707\pi\)
−0.419251 + 0.907870i \(0.637707\pi\)
\(480\) 0 0
\(481\) 0.645391 + 1.98631i 0.0294273 + 0.0905679i
\(482\) 0 0
\(483\) 53.1310i 2.41754i
\(484\) 0 0
\(485\) 0.0600903i 0.00272856i
\(486\) 0 0
\(487\) −2.20485 6.78582i −0.0999112 0.307495i 0.888591 0.458700i \(-0.151685\pi\)
−0.988502 + 0.151205i \(0.951685\pi\)
\(488\) 0 0
\(489\) 31.8031 + 23.1063i 1.43819 + 1.04490i
\(490\) 0 0
\(491\) 11.5079 + 3.73913i 0.519343 + 0.168745i 0.556947 0.830548i \(-0.311973\pi\)
−0.0376042 + 0.999293i \(0.511973\pi\)
\(492\) 0 0
\(493\) 12.1424 + 16.7125i 0.546865 + 0.752695i
\(494\) 0 0
\(495\) 1.78175 0.885385i 0.0800835 0.0397951i
\(496\) 0 0
\(497\) −2.36948 + 1.72153i −0.106286 + 0.0772210i
\(498\) 0 0
\(499\) −13.3674 4.34332i −0.598405 0.194434i −0.00587615 0.999983i \(-0.501870\pi\)
−0.592529 + 0.805549i \(0.701870\pi\)
\(500\) 0 0
\(501\) −13.3516 + 18.3770i −0.596507 + 0.821022i
\(502\) 0 0
\(503\) 8.50938 + 26.1892i 0.379415 + 1.16772i 0.940452 + 0.339928i \(0.110403\pi\)
−0.561037 + 0.827791i \(0.689597\pi\)
\(504\) 0 0
\(505\) 3.01109 0.133992
\(506\) 0 0
\(507\) 25.3064i 1.12390i
\(508\) 0 0
\(509\) −0.286361 + 0.0930445i −0.0126927 + 0.00412412i −0.315356 0.948973i \(-0.602124\pi\)
0.302664 + 0.953097i \(0.402124\pi\)
\(510\) 0 0
\(511\) −13.0876 9.50868i −0.578960 0.420639i
\(512\) 0 0
\(513\) 0.0284997 0.0877131i 0.00125829 0.00387263i
\(514\) 0 0
\(515\) 0.332862 + 0.458145i 0.0146677 + 0.0201883i
\(516\) 0 0
\(517\) 11.2725 11.0480i 0.495763 0.485888i
\(518\) 0 0
\(519\) 17.5112 12.7227i 0.768658 0.558463i
\(520\) 0 0
\(521\) −5.15755 + 15.8733i −0.225956 + 0.695422i 0.772237 + 0.635335i \(0.219138\pi\)
−0.998193 + 0.0600874i \(0.980862\pi\)
\(522\) 0 0
\(523\) −3.37114 + 4.63997i −0.147409 + 0.202892i −0.876336 0.481700i \(-0.840019\pi\)
0.728927 + 0.684592i \(0.240019\pi\)
\(524\) 0 0
\(525\) −27.0911 + 8.80242i −1.18235 + 0.384169i
\(526\) 0 0
\(527\) −27.5559 −1.20035
\(528\) 0 0
\(529\) 62.5827 2.72099
\(530\) 0 0
\(531\) 5.42134 1.76150i 0.235266 0.0764426i
\(532\) 0 0
\(533\) −5.78346 + 7.96024i −0.250509 + 0.344796i
\(534\) 0 0
\(535\) 0.0553432 0.170329i 0.00239270 0.00736396i
\(536\) 0 0
\(537\) 21.0991 15.3294i 0.910494 0.661512i
\(538\) 0 0
\(539\) −0.825189 + 4.89110i −0.0355434 + 0.210675i
\(540\) 0 0
\(541\) −14.1771 19.5131i −0.609522 0.838935i 0.387016 0.922073i \(-0.373506\pi\)
−0.996538 + 0.0831377i \(0.973506\pi\)
\(542\) 0 0
\(543\) 10.1489 31.2351i 0.435531 1.34043i
\(544\) 0 0
\(545\) −0.219469 0.159453i −0.00940101 0.00683023i
\(546\) 0 0
\(547\) −7.03428 + 2.28558i −0.300764 + 0.0977241i −0.455511 0.890230i \(-0.650544\pi\)
0.154747 + 0.987954i \(0.450544\pi\)
\(548\) 0 0
\(549\) 19.1360i 0.816707i
\(550\) 0 0
\(551\) 30.4828 1.29861
\(552\) 0 0
\(553\) 10.6009 + 32.6261i 0.450795 + 1.38740i
\(554\) 0 0
\(555\) 0.369236 0.508210i 0.0156732 0.0215723i
\(556\) 0 0
\(557\) −10.8601 3.52867i −0.460158 0.149514i 0.0697589 0.997564i \(-0.477777\pi\)
−0.529917 + 0.848049i \(0.677777\pi\)
\(558\) 0 0
\(559\) −3.26280 + 2.37056i −0.138002 + 0.100264i
\(560\) 0 0
\(561\) −3.96812 26.7954i −0.167534 1.13130i
\(562\) 0 0
\(563\) −5.71080 7.86025i −0.240682 0.331270i 0.671539 0.740969i \(-0.265634\pi\)
−0.912221 + 0.409699i \(0.865634\pi\)
\(564\) 0 0
\(565\) −0.718558 0.233474i −0.0302300 0.00982231i
\(566\) 0 0
\(567\) 17.1262 + 12.4429i 0.719231 + 0.522552i
\(568\) 0 0
\(569\) −7.44871 22.9248i −0.312266 0.961057i −0.976865 0.213856i \(-0.931398\pi\)
0.664599 0.747200i \(-0.268602\pi\)
\(570\) 0 0
\(571\) 12.8180i 0.536415i −0.963361 0.268207i \(-0.913569\pi\)
0.963361 0.268207i \(-0.0864312\pi\)
\(572\) 0 0
\(573\) 36.2756i 1.51543i
\(574\) 0 0
\(575\) 14.1788 + 43.6380i 0.591298 + 1.81983i
\(576\) 0 0
\(577\) −18.4866 13.4313i −0.769608 0.559153i 0.132234 0.991219i \(-0.457785\pi\)
−0.901842 + 0.432065i \(0.857785\pi\)
\(578\) 0 0
\(579\) −10.4159 3.38432i −0.432868 0.140647i
\(580\) 0 0
\(581\) −12.9251 17.7898i −0.536222 0.738047i
\(582\) 0 0
\(583\) 13.4523 25.7579i 0.557139 1.06678i
\(584\) 0 0
\(585\) −0.791844 + 0.575308i −0.0327387 + 0.0237861i
\(586\) 0 0
\(587\) −27.8685 9.05504i −1.15026 0.373741i −0.329017 0.944324i \(-0.606717\pi\)
−0.821240 + 0.570583i \(0.806717\pi\)
\(588\) 0 0
\(589\) −23.9003 + 32.8959i −0.984794 + 1.35545i
\(590\) 0 0
\(591\) −15.3825 47.3424i −0.632750 1.94741i
\(592\) 0 0
\(593\) 10.3694 0.425820 0.212910 0.977072i \(-0.431706\pi\)
0.212910 + 0.977072i \(0.431706\pi\)
\(594\) 0 0
\(595\) 1.56925i 0.0643329i
\(596\) 0 0
\(597\) 24.2455 7.87785i 0.992303 0.322419i
\(598\) 0 0
\(599\) −16.8754 12.2607i −0.689508 0.500957i 0.186990 0.982362i \(-0.440127\pi\)
−0.876498 + 0.481405i \(0.840127\pi\)
\(600\) 0 0
\(601\) 12.1139 37.2827i 0.494135 1.52079i −0.324164 0.946001i \(-0.605083\pi\)
0.818300 0.574792i \(-0.194917\pi\)
\(602\) 0 0
\(603\) 14.5519 + 20.0290i 0.592599 + 0.815642i
\(604\) 0 0
\(605\) 0.639122 + 2.11057i 0.0259840 + 0.0858068i
\(606\) 0 0
\(607\) −21.5873 + 15.6841i −0.876203 + 0.636599i −0.932244 0.361830i \(-0.882152\pi\)
0.0560410 + 0.998428i \(0.482152\pi\)
\(608\) 0 0
\(609\) −10.9887 + 33.8197i −0.445284 + 1.37044i
\(610\) 0 0
\(611\) −4.56398 + 6.28177i −0.184639 + 0.254133i
\(612\) 0 0
\(613\) 29.2625 9.50796i 1.18190 0.384023i 0.348828 0.937187i \(-0.386580\pi\)
0.833073 + 0.553164i \(0.186580\pi\)
\(614\) 0 0
\(615\) 2.95947 0.119337
\(616\) 0 0
\(617\) 10.0183 0.403323 0.201662 0.979455i \(-0.435366\pi\)
0.201662 + 0.979455i \(0.435366\pi\)
\(618\) 0 0
\(619\) 30.5262 9.91856i 1.22695 0.398660i 0.377342 0.926074i \(-0.376838\pi\)
0.849609 + 0.527414i \(0.176838\pi\)
\(620\) 0 0
\(621\) 0.101864 0.140204i 0.00408768 0.00562621i
\(622\) 0 0
\(623\) 3.70569 11.4049i 0.148465 0.456929i
\(624\) 0 0
\(625\) −19.7390 + 14.3412i −0.789561 + 0.573649i
\(626\) 0 0
\(627\) −35.4299 18.5036i −1.41493 0.738964i
\(628\) 0 0
\(629\) −2.51029 3.45512i −0.100092 0.137765i
\(630\) 0 0
\(631\) 0.865296 2.66311i 0.0344469 0.106017i −0.932355 0.361545i \(-0.882249\pi\)
0.966802 + 0.255528i \(0.0822494\pi\)
\(632\) 0 0
\(633\) −37.0888 26.9466i −1.47415 1.07103i
\(634\) 0 0
\(635\) 1.40189 0.455501i 0.0556322 0.0180760i
\(636\) 0 0
\(637\) 2.44015i 0.0966823i
\(638\) 0 0
\(639\) −3.73551 −0.147775
\(640\) 0 0
\(641\) 5.21567 + 16.0522i 0.206007 + 0.634023i 0.999671 + 0.0256668i \(0.00817089\pi\)
−0.793664 + 0.608356i \(0.791829\pi\)
\(642\) 0 0
\(643\) −28.8449 + 39.7016i −1.13753 + 1.56568i −0.364630 + 0.931153i \(0.618804\pi\)
−0.772902 + 0.634525i \(0.781196\pi\)
\(644\) 0 0
\(645\) 1.15368 + 0.374852i 0.0454260 + 0.0147598i
\(646\) 0 0
\(647\) −28.5917 + 20.7731i −1.12406 + 0.816675i −0.984819 0.173585i \(-0.944465\pi\)
−0.139237 + 0.990259i \(0.544465\pi\)
\(648\) 0 0
\(649\) 0.925546 + 6.24991i 0.0363309 + 0.245330i
\(650\) 0 0
\(651\) −27.8812 38.3751i −1.09275 1.50404i
\(652\) 0 0
\(653\) −0.182805 0.0593970i −0.00715372 0.00232438i 0.305438 0.952212i \(-0.401197\pi\)
−0.312592 + 0.949888i \(0.601197\pi\)
\(654\) 0 0
\(655\) 1.11149 + 0.807542i 0.0434293 + 0.0315533i
\(656\) 0 0
\(657\) −6.37587 19.6229i −0.248746 0.765563i
\(658\) 0 0
\(659\) 46.4826i 1.81071i −0.424660 0.905353i \(-0.639606\pi\)
0.424660 0.905353i \(-0.360394\pi\)
\(660\) 0 0
\(661\) 24.0904i 0.937007i −0.883462 0.468503i \(-0.844793\pi\)
0.883462 0.468503i \(-0.155207\pi\)
\(662\) 0 0
\(663\) 4.11784 + 12.6734i 0.159924 + 0.492194i
\(664\) 0 0
\(665\) −1.87335 1.36107i −0.0726455 0.0527801i
\(666\) 0 0
\(667\) 54.4763 + 17.7004i 2.10933 + 0.685363i
\(668\) 0 0
\(669\) 20.9747 + 28.8692i 0.810929 + 1.11615i
\(670\) 0 0
\(671\) 20.9142 + 3.52849i 0.807385 + 0.136216i
\(672\) 0 0
\(673\) 6.12494 4.45003i 0.236099 0.171536i −0.463444 0.886126i \(-0.653387\pi\)
0.699544 + 0.714590i \(0.253387\pi\)
\(674\) 0 0
\(675\) 0.0883654 + 0.0287117i 0.00340119 + 0.00110511i
\(676\) 0 0
\(677\) −12.1390 + 16.7079i −0.466540 + 0.642137i −0.975849 0.218447i \(-0.929901\pi\)
0.509309 + 0.860584i \(0.329901\pi\)
\(678\) 0 0
\(679\) 0.217313 + 0.668820i 0.00833969 + 0.0256669i
\(680\) 0 0
\(681\) −10.2371 −0.392287
\(682\) 0 0
\(683\) 14.6272i 0.559694i 0.960045 + 0.279847i \(0.0902837\pi\)
−0.960045 + 0.279847i \(0.909716\pi\)
\(684\) 0 0
\(685\) −0.534432 + 0.173648i −0.0204196 + 0.00663473i
\(686\) 0 0
\(687\) 46.0272 + 33.4407i 1.75605 + 1.27584i
\(688\) 0 0
\(689\) −4.41754 + 13.5958i −0.168295 + 0.517958i
\(690\) 0 0
\(691\) 13.4854 + 18.5610i 0.513008 + 0.706095i 0.984423 0.175817i \(-0.0562566\pi\)
−0.471415 + 0.881911i \(0.656257\pi\)
\(692\) 0 0
\(693\) 16.6293 16.2981i 0.631696 0.619114i
\(694\) 0 0
\(695\) −1.44429 + 1.04934i −0.0547851 + 0.0398037i
\(696\) 0 0
\(697\) 6.21750 19.1355i 0.235505 0.724809i
\(698\) 0 0
\(699\) −20.1187 + 27.6911i −0.760960 + 1.04737i
\(700\) 0 0
\(701\) −0.666479 + 0.216552i −0.0251726 + 0.00817907i −0.321576 0.946884i \(-0.604213\pi\)
0.296404 + 0.955063i \(0.404213\pi\)
\(702\) 0 0
\(703\) −6.30196 −0.237683
\(704\) 0 0
\(705\) 2.33545 0.0879580
\(706\) 0 0
\(707\) 33.5141 10.8894i 1.26043 0.409538i
\(708\) 0 0
\(709\) 2.38215 3.27875i 0.0894636 0.123136i −0.761939 0.647649i \(-0.775752\pi\)
0.851403 + 0.524513i \(0.175752\pi\)
\(710\) 0 0
\(711\) −13.5206 + 41.6122i −0.507063 + 1.56058i
\(712\) 0 0
\(713\) −61.8141 + 44.9106i −2.31496 + 1.68192i
\(714\) 0 0
\(715\) −0.482760 0.971506i −0.0180542 0.0363323i
\(716\) 0 0
\(717\) −34.4409 47.4038i −1.28622 1.77033i
\(718\) 0 0
\(719\) −3.11822 + 9.59690i −0.116290 + 0.357904i −0.992214 0.124545i \(-0.960253\pi\)
0.875924 + 0.482449i \(0.160253\pi\)
\(720\) 0 0
\(721\) 5.36169 + 3.89549i 0.199680 + 0.145076i
\(722\) 0 0
\(723\) 60.9599 19.8071i 2.26712 0.736632i
\(724\) 0 0
\(725\) 30.7095i 1.14052i
\(726\) 0 0
\(727\) 13.6615 0.506675 0.253338 0.967378i \(-0.418472\pi\)
0.253338 + 0.967378i \(0.418472\pi\)
\(728\) 0 0
\(729\) 8.30084 + 25.5474i 0.307438 + 0.946198i
\(730\) 0 0
\(731\) 4.84748 6.67199i 0.179291 0.246772i
\(732\) 0 0
\(733\) 17.0433 + 5.53772i 0.629510 + 0.204540i 0.606358 0.795192i \(-0.292630\pi\)
0.0231521 + 0.999732i \(0.492630\pi\)
\(734\) 0 0
\(735\) −0.593772 + 0.431400i −0.0219016 + 0.0159124i
\(736\) 0 0
\(737\) −24.5733 + 12.2110i −0.905170 + 0.449797i
\(738\) 0 0
\(739\) −13.8476 19.0596i −0.509393 0.701120i 0.474424 0.880297i \(-0.342656\pi\)
−0.983817 + 0.179177i \(0.942656\pi\)
\(740\) 0 0
\(741\) 18.7010 + 6.07631i 0.686997 + 0.223219i
\(742\) 0 0
\(743\) −11.0265 8.01121i −0.404523 0.293903i 0.366858 0.930277i \(-0.380434\pi\)
−0.771381 + 0.636374i \(0.780434\pi\)
\(744\) 0 0
\(745\) 0.746241 + 2.29669i 0.0273402 + 0.0841444i
\(746\) 0 0
\(747\) 28.0459i 1.02615i
\(748\) 0 0
\(749\) 2.09595i 0.0765842i
\(750\) 0 0
\(751\) 3.77972 + 11.6328i 0.137924 + 0.424486i 0.996033 0.0889809i \(-0.0283610\pi\)
−0.858110 + 0.513467i \(0.828361\pi\)
\(752\) 0 0
\(753\) −38.1749 27.7357i −1.39117 1.01075i
\(754\) 0 0
\(755\) −1.00989 0.328134i −0.0367537 0.0119420i
\(756\) 0 0
\(757\) −12.5436 17.2648i −0.455906 0.627501i 0.517747 0.855534i \(-0.326771\pi\)
−0.973654 + 0.228033i \(0.926771\pi\)
\(758\) 0 0
\(759\) −52.5727 53.6411i −1.90827 1.94705i
\(760\) 0 0
\(761\) −9.57071 + 6.95353i −0.346938 + 0.252065i −0.747583 0.664168i \(-0.768786\pi\)
0.400645 + 0.916233i \(0.368786\pi\)
\(762\) 0 0
\(763\) −3.01939 0.981060i −0.109309 0.0355167i
\(764\) 0 0
\(765\) 1.17643 1.61922i 0.0425339 0.0585429i
\(766\) 0 0
\(767\) −0.960466 2.95601i −0.0346804 0.106735i
\(768\) 0 0
\(769\) 2.94327 0.106137 0.0530685 0.998591i \(-0.483100\pi\)
0.0530685 + 0.998591i \(0.483100\pi\)
\(770\) 0 0
\(771\) 18.0369i 0.649583i
\(772\) 0 0
\(773\) −7.56561 + 2.45822i −0.272116 + 0.0884159i −0.441896 0.897066i \(-0.645694\pi\)
0.169780 + 0.985482i \(0.445694\pi\)
\(774\) 0 0
\(775\) −33.1406 24.0780i −1.19044 0.864908i
\(776\) 0 0
\(777\) 2.27178 6.99182i 0.0814996 0.250830i
\(778\) 0 0
\(779\) −17.4511 24.0194i −0.625251 0.860584i
\(780\) 0 0
\(781\) 0.688790 4.08263i 0.0246468 0.146088i
\(782\) 0 0
\(783\) 0.0938376 0.0681770i 0.00335348 0.00243645i
\(784\) 0 0
\(785\) −0.244733 + 0.753210i −0.00873489 + 0.0268832i
\(786\) 0 0
\(787\) −1.60061 + 2.20304i −0.0570554 + 0.0785300i −0.836591 0.547828i \(-0.815455\pi\)
0.779536 + 0.626358i \(0.215455\pi\)
\(788\) 0 0
\(789\) 6.26831 2.03670i 0.223158 0.0725083i
\(790\) 0 0
\(791\) −8.84207 −0.314388
\(792\) 0 0
\(793\) −10.4340 −0.370523
\(794\) 0 0
\(795\) 4.08930 1.32870i 0.145033 0.0471240i
\(796\) 0 0
\(797\) −16.4925 + 22.7000i −0.584196 + 0.804077i −0.994148 0.108031i \(-0.965546\pi\)
0.409952 + 0.912107i \(0.365546\pi\)
\(798\) 0 0
\(799\) 4.90650 15.1007i 0.173580 0.534223i
\(800\) 0 0
\(801\) 12.3737 8.99002i 0.437203 0.317647i
\(802\) 0 0
\(803\) 22.6220 3.35008i 0.798313 0.118222i
\(804\) 0 0
\(805\) −2.55756 3.52018i −0.0901423 0.124070i
\(806\) 0 0
\(807\) −11.7682 + 36.2187i −0.414259 + 1.27496i
\(808\) 0 0
\(809\) 26.3156 + 19.1194i 0.925207 + 0.672202i 0.944815 0.327605i \(-0.106242\pi\)
−0.0196074 + 0.999808i \(0.506242\pi\)
\(810\) 0 0
\(811\) −8.46947 + 2.75190i −0.297403 + 0.0966322i −0.453918 0.891043i \(-0.649974\pi\)
0.156515 + 0.987676i \(0.449974\pi\)
\(812\) 0 0
\(813\) 2.28648i 0.0801904i
\(814\) 0 0
\(815\) −3.21938 −0.112770
\(816\) 0 0
\(817\) −3.76054 11.5738i −0.131565 0.404915i
\(818\) 0 0
\(819\) −6.73285 + 9.26697i −0.235265 + 0.323814i
\(820\) 0 0
\(821\) 13.6833 + 4.44597i 0.477550 + 0.155165i 0.537895 0.843012i \(-0.319220\pi\)
−0.0603443 + 0.998178i \(0.519220\pi\)
\(822\) 0 0
\(823\) −28.5715 + 20.7584i −0.995940 + 0.723593i −0.961214 0.275804i \(-0.911056\pi\)
−0.0347264 + 0.999397i \(0.511056\pi\)
\(824\) 0 0
\(825\) 18.6412 35.6933i 0.649005 1.24268i
\(826\) 0 0
\(827\) −7.54322 10.3823i −0.262303 0.361030i 0.657469 0.753481i \(-0.271627\pi\)
−0.919773 + 0.392452i \(0.871627\pi\)
\(828\) 0 0
\(829\) −22.7234 7.38328i −0.789216 0.256432i −0.113446 0.993544i \(-0.536189\pi\)
−0.675770 + 0.737112i \(0.736189\pi\)
\(830\) 0 0
\(831\) −26.8550 19.5113i −0.931591 0.676840i
\(832\) 0 0
\(833\) 1.54193 + 4.74556i 0.0534246 + 0.164424i
\(834\) 0 0
\(835\) 1.86027i 0.0643773i
\(836\) 0 0
\(837\) 0.154721i 0.00534793i
\(838\) 0 0
\(839\) −7.29937 22.4652i −0.252002 0.775583i −0.994406 0.105630i \(-0.966314\pi\)
0.742403 0.669953i \(-0.233686\pi\)
\(840\) 0 0
\(841\) 7.55366 + 5.48805i 0.260471 + 0.189243i
\(842\) 0 0
\(843\) −36.1958 11.7607i −1.24665 0.405061i
\(844\) 0 0
\(845\) −1.21817 1.67667i −0.0419065 0.0576793i
\(846\) 0 0
\(847\) 14.7463 + 21.1798i 0.506689 + 0.727746i
\(848\) 0 0
\(849\) 4.64131 3.37211i 0.159289 0.115730i
\(850\) 0 0
\(851\) −11.2623 3.65935i −0.386068 0.125441i
\(852\) 0 0
\(853\) 24.5116 33.7374i 0.839262 1.15515i −0.146865 0.989156i \(-0.546918\pi\)
0.986128 0.165989i \(-0.0530816\pi\)
\(854\) 0 0
\(855\) −0.912641 2.80882i −0.0312117 0.0960596i
\(856\) 0 0
\(857\) −4.35256 −0.148680 −0.0743402 0.997233i \(-0.523685\pi\)
−0.0743402 + 0.997233i \(0.523685\pi\)
\(858\) 0 0
\(859\) 7.91648i 0.270107i 0.990838 + 0.135053i \(0.0431206\pi\)
−0.990838 + 0.135053i \(0.956879\pi\)
\(860\) 0 0
\(861\) 32.9396 10.7027i 1.12258 0.364748i
\(862\) 0 0
\(863\) −9.98178 7.25219i −0.339784 0.246867i 0.404787 0.914411i \(-0.367346\pi\)
−0.744571 + 0.667544i \(0.767346\pi\)
\(864\) 0 0
\(865\) −0.547774 + 1.68588i −0.0186249 + 0.0573215i
\(866\) 0 0
\(867\) 8.44394 + 11.6221i 0.286771 + 0.394707i
\(868\) 0 0
\(869\) −42.9859 22.4499i −1.45820 0.761560i
\(870\) 0 0
\(871\) 10.9209 7.93449i 0.370040 0.268850i
\(872\) 0 0
\(873\) −0.277166 + 0.853031i −0.00938066 + 0.0288707i
\(874\) 0 0
\(875\) 2.75350 3.78986i 0.0930852 0.128121i
\(876\) 0 0
\(877\) −55.4714 + 18.0237i −1.87314 + 0.608619i −0.882834 + 0.469686i \(0.844367\pi\)
−0.990302 + 0.138933i \(0.955633\pi\)
\(878\) 0 0
\(879\) 45.0289 1.51879
\(880\) 0 0
\(881\) −25.8106 −0.869581 −0.434791 0.900532i \(-0.643178\pi\)
−0.434791 + 0.900532i \(0.643178\pi\)
\(882\) 0 0
\(883\) −34.8110 + 11.3108i −1.17148 + 0.380638i −0.829196 0.558958i \(-0.811201\pi\)
−0.342287 + 0.939596i \(0.611201\pi\)
\(884\) 0 0
\(885\) −0.549495 + 0.756315i −0.0184711 + 0.0254232i
\(886\) 0 0
\(887\) −6.76505 + 20.8207i −0.227148 + 0.699091i 0.770918 + 0.636934i \(0.219798\pi\)
−0.998066 + 0.0621563i \(0.980202\pi\)
\(888\) 0 0
\(889\) 13.9561 10.1397i 0.468071 0.340074i
\(890\) 0 0
\(891\) −29.6027 + 4.38385i −0.991729 + 0.146865i
\(892\) 0 0
\(893\) −13.7714 18.9547i −0.460843 0.634296i
\(894\) 0 0
\(895\) −0.660007 + 2.03129i −0.0220616 + 0.0678986i
\(896\) 0 0
\(897\) 29.8924 + 21.7181i 0.998078 + 0.725146i
\(898\) 0 0
\(899\) −48.6353 + 15.8026i −1.62208 + 0.527045i
\(900\) 0 0
\(901\) 29.2323i 0.973869i
\(902\) 0 0
\(903\) 14.1963 0.472424
\(904\) 0 0
\(905\) 0.831149 + 2.55801i 0.0276283 + 0.0850313i
\(906\) 0 0
\(907\) −16.9320 + 23.3049i −0.562218 + 0.773827i −0.991606 0.129293i \(-0.958729\pi\)
0.429388 + 0.903120i \(0.358729\pi\)
\(908\) 0 0
\(909\) 42.7448 + 13.8886i 1.41776 + 0.460657i
\(910\) 0 0
\(911\) 35.7732 25.9908i 1.18522 0.861113i 0.192469 0.981303i \(-0.438351\pi\)
0.992751 + 0.120191i \(0.0383505\pi\)
\(912\) 0 0
\(913\) 30.6521 + 5.17138i 1.01444 + 0.171148i
\(914\) 0 0
\(915\) 1.84466 + 2.53895i 0.0609825 + 0.0839352i
\(916\) 0 0
\(917\) 15.2915 + 4.96852i 0.504970 + 0.164075i
\(918\) 0 0
\(919\) −15.3711 11.1678i −0.507046 0.368390i 0.304656 0.952462i \(-0.401459\pi\)
−0.811702 + 0.584072i \(0.801459\pi\)
\(920\) 0 0
\(921\) 15.4092 + 47.4246i 0.507750 + 1.56269i
\(922\) 0 0
\(923\) 2.03681i 0.0670423i
\(924\) 0 0
\(925\) 6.34883i 0.208748i
\(926\) 0 0
\(927\) 2.61205 + 8.03907i 0.0857910 + 0.264038i
\(928\) 0 0
\(929\) −22.7067 16.4974i −0.744983 0.541262i 0.149285 0.988794i \(-0.452303\pi\)
−0.894268 + 0.447532i \(0.852303\pi\)
\(930\) 0 0
\(931\) 7.00259 + 2.27528i 0.229500 + 0.0745692i
\(932\) 0 0
\(933\) 31.2356 + 42.9921i 1.02261 + 1.40750i
\(934\) 0 0
\(935\) 1.55276 + 1.58431i 0.0507806 + 0.0518126i
\(936\) 0 0
\(937\) −0.237551 + 0.172591i −0.00776046 + 0.00563830i −0.591659 0.806189i \(-0.701527\pi\)
0.583898 + 0.811827i \(0.301527\pi\)
\(938\) 0 0
\(939\) 62.4573 + 20.2936i 2.03822 + 0.662256i
\(940\) 0 0
\(941\) −9.48051 + 13.0488i −0.309056 + 0.425379i −0.935087 0.354420i \(-0.884678\pi\)
0.626031 + 0.779798i \(0.284678\pi\)
\(942\) 0 0
\(943\) −17.2398 53.0587i −0.561405 1.72783i
\(944\) 0 0
\(945\) −0.00881101 −0.000286622
\(946\) 0 0
\(947\) 29.0812i 0.945011i 0.881328 + 0.472505i \(0.156650\pi\)
−0.881328 + 0.472505i \(0.843350\pi\)
\(948\) 0 0
\(949\) −10.6995 + 3.47648i −0.347320 + 0.112851i
\(950\) 0 0
\(951\) 7.54554 + 5.48215i 0.244681 + 0.177771i
\(952\) 0 0
\(953\) 12.5355 38.5803i 0.406065 1.24974i −0.513937 0.857828i \(-0.671814\pi\)
0.920003 0.391912i \(-0.128186\pi\)
\(954\) 0 0
\(955\) −1.74620 2.40343i −0.0565056 0.0777732i
\(956\) 0 0
\(957\) −22.3701 45.0176i −0.723123 1.45521i
\(958\) 0 0
\(959\) −5.32037 + 3.86548i −0.171804 + 0.124823i
\(960\) 0 0
\(961\) 11.4998 35.3927i 0.370961 1.14170i
\(962\) 0 0
\(963\) 1.57128 2.16269i 0.0506339 0.0696916i
\(964\) 0 0
\(965\) 0.853011 0.277160i 0.0274594 0.00892210i
\(966\) 0 0
\(967\) −6.42732 −0.206689 −0.103344 0.994646i \(-0.532954\pi\)
−0.103344 + 0.994646i \(0.532954\pi\)
\(968\) 0 0
\(969\) −40.2089 −1.29170
\(970\) 0 0
\(971\) 48.2270 15.6699i 1.54768 0.502871i 0.594195 0.804321i \(-0.297471\pi\)
0.953482 + 0.301450i \(0.0974707\pi\)
\(972\) 0 0
\(973\) −12.2804 + 16.9026i −0.393693 + 0.541871i
\(974\) 0 0
\(975\) −6.12150 + 18.8400i −0.196045 + 0.603364i
\(976\) 0 0
\(977\) 0.0813429 0.0590991i 0.00260239 0.00189075i −0.586483 0.809961i \(-0.699488\pi\)
0.589086 + 0.808071i \(0.299488\pi\)
\(978\) 0 0
\(979\) 7.54383 + 15.1812i 0.241102 + 0.485193i
\(980\) 0 0
\(981\) −2.38006 3.27587i −0.0759894 0.104590i
\(982\) 0 0
\(983\) −8.13927 + 25.0501i −0.259603 + 0.798974i 0.733285 + 0.679921i \(0.237986\pi\)
−0.992888 + 0.119053i \(0.962014\pi\)
\(984\) 0 0
\(985\) 3.29808 + 2.39620i 0.105086 + 0.0763491i
\(986\) 0 0
\(987\) 25.9941 8.44599i 0.827400 0.268839i
\(988\) 0 0
\(989\) 22.8672i 0.727136i
\(990\) 0 0
\(991\) 27.9640 0.888306 0.444153 0.895951i \(-0.353505\pi\)
0.444153 + 0.895951i \(0.353505\pi\)
\(992\) 0 0
\(993\) 21.3546 + 65.7228i 0.677669 + 2.08565i
\(994\) 0 0
\(995\) −1.22717 + 1.68905i −0.0389038 + 0.0535465i
\(996\) 0 0
\(997\) 54.4887 + 17.7045i 1.72567 + 0.560706i 0.992813 0.119673i \(-0.0381846\pi\)
0.732861 + 0.680378i \(0.238185\pi\)
\(998\) 0 0
\(999\) −0.0193998 + 0.0140948i −0.000613783 + 0.000445939i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 352.2.w.a.113.2 40
4.3 odd 2 88.2.o.a.69.2 yes 40
8.3 odd 2 88.2.o.a.69.7 yes 40
8.5 even 2 inner 352.2.w.a.113.9 40
11.2 odd 10 3872.2.c.i.1937.17 20
11.4 even 5 inner 352.2.w.a.81.9 40
11.9 even 5 3872.2.c.h.1937.17 20
12.11 even 2 792.2.br.b.685.9 40
24.11 even 2 792.2.br.b.685.4 40
44.3 odd 10 968.2.o.j.269.2 40
44.7 even 10 968.2.o.i.565.4 40
44.15 odd 10 88.2.o.a.37.7 yes 40
44.19 even 10 968.2.o.d.269.9 40
44.27 odd 10 968.2.o.j.493.10 40
44.31 odd 10 968.2.c.h.485.14 20
44.35 even 10 968.2.c.i.485.7 20
44.39 even 10 968.2.o.d.493.1 40
44.43 even 2 968.2.o.i.245.9 40
88.3 odd 10 968.2.o.j.269.10 40
88.13 odd 10 3872.2.c.i.1937.4 20
88.19 even 10 968.2.o.d.269.1 40
88.27 odd 10 968.2.o.j.493.2 40
88.35 even 10 968.2.c.i.485.8 20
88.37 even 10 inner 352.2.w.a.81.2 40
88.43 even 2 968.2.o.i.245.4 40
88.51 even 10 968.2.o.i.565.9 40
88.53 even 10 3872.2.c.h.1937.4 20
88.59 odd 10 88.2.o.a.37.2 40
88.75 odd 10 968.2.c.h.485.13 20
88.83 even 10 968.2.o.d.493.9 40
132.59 even 10 792.2.br.b.37.4 40
264.59 even 10 792.2.br.b.37.9 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
88.2.o.a.37.2 40 88.59 odd 10
88.2.o.a.37.7 yes 40 44.15 odd 10
88.2.o.a.69.2 yes 40 4.3 odd 2
88.2.o.a.69.7 yes 40 8.3 odd 2
352.2.w.a.81.2 40 88.37 even 10 inner
352.2.w.a.81.9 40 11.4 even 5 inner
352.2.w.a.113.2 40 1.1 even 1 trivial
352.2.w.a.113.9 40 8.5 even 2 inner
792.2.br.b.37.4 40 132.59 even 10
792.2.br.b.37.9 40 264.59 even 10
792.2.br.b.685.4 40 24.11 even 2
792.2.br.b.685.9 40 12.11 even 2
968.2.c.h.485.13 20 88.75 odd 10
968.2.c.h.485.14 20 44.31 odd 10
968.2.c.i.485.7 20 44.35 even 10
968.2.c.i.485.8 20 88.35 even 10
968.2.o.d.269.1 40 88.19 even 10
968.2.o.d.269.9 40 44.19 even 10
968.2.o.d.493.1 40 44.39 even 10
968.2.o.d.493.9 40 88.83 even 10
968.2.o.i.245.4 40 88.43 even 2
968.2.o.i.245.9 40 44.43 even 2
968.2.o.i.565.4 40 44.7 even 10
968.2.o.i.565.9 40 88.51 even 10
968.2.o.j.269.2 40 44.3 odd 10
968.2.o.j.269.10 40 88.3 odd 10
968.2.o.j.493.2 40 88.27 odd 10
968.2.o.j.493.10 40 44.27 odd 10
3872.2.c.h.1937.4 20 88.53 even 10
3872.2.c.h.1937.17 20 11.9 even 5
3872.2.c.i.1937.4 20 88.13 odd 10
3872.2.c.i.1937.17 20 11.2 odd 10