Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [352,2,Mod(49,352)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(352, base_ring=CyclotomicField(10))
chi = DirichletCharacter(H, H._module([0, 5, 4]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("352.49");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 352 = 2^{5} \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 352.w (of order \(10\), degree \(4\), not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(2.81073415115\) |
Analytic rank: | \(0\) |
Dimension: | \(40\) |
Relative dimension: | \(10\) over \(\Q(\zeta_{10})\) |
Twist minimal: | no (minimal twist has level 88) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{10}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
49.1 | 0 | −1.67918 | + | 2.31119i | 0 | −2.48027 | − | 0.805887i | 0 | 0.158860 | − | 0.115419i | 0 | −1.59492 | − | 4.90866i | 0 | ||||||||||
49.2 | 0 | −1.50170 | + | 2.06692i | 0 | 2.56349 | + | 0.832928i | 0 | 3.19487 | − | 2.32121i | 0 | −1.08998 | − | 3.35462i | 0 | ||||||||||
49.3 | 0 | −1.10501 | + | 1.52092i | 0 | −0.468972 | − | 0.152378i | 0 | 0.141392 | − | 0.102727i | 0 | −0.165095 | − | 0.508111i | 0 | ||||||||||
49.4 | 0 | −0.317655 | + | 0.437215i | 0 | −2.75892 | − | 0.896426i | 0 | 2.10709 | − | 1.53089i | 0 | 0.836799 | + | 2.57540i | 0 | ||||||||||
49.5 | 0 | −0.188809 | + | 0.259874i | 0 | −1.22432 | − | 0.397805i | 0 | −2.67516 | + | 1.94362i | 0 | 0.895166 | + | 2.75504i | 0 | ||||||||||
49.6 | 0 | 0.188809 | − | 0.259874i | 0 | 1.22432 | + | 0.397805i | 0 | −2.67516 | + | 1.94362i | 0 | 0.895166 | + | 2.75504i | 0 | ||||||||||
49.7 | 0 | 0.317655 | − | 0.437215i | 0 | 2.75892 | + | 0.896426i | 0 | 2.10709 | − | 1.53089i | 0 | 0.836799 | + | 2.57540i | 0 | ||||||||||
49.8 | 0 | 1.10501 | − | 1.52092i | 0 | 0.468972 | + | 0.152378i | 0 | 0.141392 | − | 0.102727i | 0 | −0.165095 | − | 0.508111i | 0 | ||||||||||
49.9 | 0 | 1.50170 | − | 2.06692i | 0 | −2.56349 | − | 0.832928i | 0 | 3.19487 | − | 2.32121i | 0 | −1.08998 | − | 3.35462i | 0 | ||||||||||
49.10 | 0 | 1.67918 | − | 2.31119i | 0 | 2.48027 | + | 0.805887i | 0 | 0.158860 | − | 0.115419i | 0 | −1.59492 | − | 4.90866i | 0 | ||||||||||
81.1 | 0 | −2.62285 | − | 0.852217i | 0 | −1.70795 | − | 2.35079i | 0 | −0.730368 | − | 2.24784i | 0 | 3.72604 | + | 2.70713i | 0 | ||||||||||
81.2 | 0 | −2.32812 | − | 0.756451i | 0 | 0.117836 | + | 0.162187i | 0 | 0.725001 | + | 2.23132i | 0 | 2.42086 | + | 1.75886i | 0 | ||||||||||
81.3 | 0 | −1.22337 | − | 0.397498i | 0 | −0.929834 | − | 1.27981i | 0 | 0.577320 | + | 1.77681i | 0 | −1.08841 | − | 0.790780i | 0 | ||||||||||
81.4 | 0 | −0.826127 | − | 0.268425i | 0 | 2.15963 | + | 2.97247i | 0 | 0.369362 | + | 1.13678i | 0 | −1.81662 | − | 1.31985i | 0 | ||||||||||
81.5 | 0 | −0.582243 | − | 0.189182i | 0 | 0.858340 | + | 1.18140i | 0 | −1.36837 | − | 4.21140i | 0 | −2.12383 | − | 1.54306i | 0 | ||||||||||
81.6 | 0 | 0.582243 | + | 0.189182i | 0 | −0.858340 | − | 1.18140i | 0 | −1.36837 | − | 4.21140i | 0 | −2.12383 | − | 1.54306i | 0 | ||||||||||
81.7 | 0 | 0.826127 | + | 0.268425i | 0 | −2.15963 | − | 2.97247i | 0 | 0.369362 | + | 1.13678i | 0 | −1.81662 | − | 1.31985i | 0 | ||||||||||
81.8 | 0 | 1.22337 | + | 0.397498i | 0 | 0.929834 | + | 1.27981i | 0 | 0.577320 | + | 1.77681i | 0 | −1.08841 | − | 0.790780i | 0 | ||||||||||
81.9 | 0 | 2.32812 | + | 0.756451i | 0 | −0.117836 | − | 0.162187i | 0 | 0.725001 | + | 2.23132i | 0 | 2.42086 | + | 1.75886i | 0 | ||||||||||
81.10 | 0 | 2.62285 | + | 0.852217i | 0 | 1.70795 | + | 2.35079i | 0 | −0.730368 | − | 2.24784i | 0 | 3.72604 | + | 2.70713i | 0 | ||||||||||
See all 40 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
8.b | even | 2 | 1 | inner |
11.c | even | 5 | 1 | inner |
88.o | even | 10 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 352.2.w.a | 40 | |
4.b | odd | 2 | 1 | 88.2.o.a | ✓ | 40 | |
8.b | even | 2 | 1 | inner | 352.2.w.a | 40 | |
8.d | odd | 2 | 1 | 88.2.o.a | ✓ | 40 | |
11.c | even | 5 | 1 | inner | 352.2.w.a | 40 | |
11.c | even | 5 | 1 | 3872.2.c.h | 20 | ||
11.d | odd | 10 | 1 | 3872.2.c.i | 20 | ||
12.b | even | 2 | 1 | 792.2.br.b | 40 | ||
24.f | even | 2 | 1 | 792.2.br.b | 40 | ||
44.c | even | 2 | 1 | 968.2.o.i | 40 | ||
44.g | even | 10 | 1 | 968.2.c.i | 20 | ||
44.g | even | 10 | 2 | 968.2.o.d | 40 | ||
44.g | even | 10 | 1 | 968.2.o.i | 40 | ||
44.h | odd | 10 | 1 | 88.2.o.a | ✓ | 40 | |
44.h | odd | 10 | 1 | 968.2.c.h | 20 | ||
44.h | odd | 10 | 2 | 968.2.o.j | 40 | ||
88.g | even | 2 | 1 | 968.2.o.i | 40 | ||
88.k | even | 10 | 1 | 968.2.c.i | 20 | ||
88.k | even | 10 | 2 | 968.2.o.d | 40 | ||
88.k | even | 10 | 1 | 968.2.o.i | 40 | ||
88.l | odd | 10 | 1 | 88.2.o.a | ✓ | 40 | |
88.l | odd | 10 | 1 | 968.2.c.h | 20 | ||
88.l | odd | 10 | 2 | 968.2.o.j | 40 | ||
88.o | even | 10 | 1 | inner | 352.2.w.a | 40 | |
88.o | even | 10 | 1 | 3872.2.c.h | 20 | ||
88.p | odd | 10 | 1 | 3872.2.c.i | 20 | ||
132.o | even | 10 | 1 | 792.2.br.b | 40 | ||
264.w | even | 10 | 1 | 792.2.br.b | 40 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
88.2.o.a | ✓ | 40 | 4.b | odd | 2 | 1 | |
88.2.o.a | ✓ | 40 | 8.d | odd | 2 | 1 | |
88.2.o.a | ✓ | 40 | 44.h | odd | 10 | 1 | |
88.2.o.a | ✓ | 40 | 88.l | odd | 10 | 1 | |
352.2.w.a | 40 | 1.a | even | 1 | 1 | trivial | |
352.2.w.a | 40 | 8.b | even | 2 | 1 | inner | |
352.2.w.a | 40 | 11.c | even | 5 | 1 | inner | |
352.2.w.a | 40 | 88.o | even | 10 | 1 | inner | |
792.2.br.b | 40 | 12.b | even | 2 | 1 | ||
792.2.br.b | 40 | 24.f | even | 2 | 1 | ||
792.2.br.b | 40 | 132.o | even | 10 | 1 | ||
792.2.br.b | 40 | 264.w | even | 10 | 1 | ||
968.2.c.h | 20 | 44.h | odd | 10 | 1 | ||
968.2.c.h | 20 | 88.l | odd | 10 | 1 | ||
968.2.c.i | 20 | 44.g | even | 10 | 1 | ||
968.2.c.i | 20 | 88.k | even | 10 | 1 | ||
968.2.o.d | 40 | 44.g | even | 10 | 2 | ||
968.2.o.d | 40 | 88.k | even | 10 | 2 | ||
968.2.o.i | 40 | 44.c | even | 2 | 1 | ||
968.2.o.i | 40 | 44.g | even | 10 | 1 | ||
968.2.o.i | 40 | 88.g | even | 2 | 1 | ||
968.2.o.i | 40 | 88.k | even | 10 | 1 | ||
968.2.o.j | 40 | 44.h | odd | 10 | 2 | ||
968.2.o.j | 40 | 88.l | odd | 10 | 2 | ||
3872.2.c.h | 20 | 11.c | even | 5 | 1 | ||
3872.2.c.h | 20 | 88.o | even | 10 | 1 | ||
3872.2.c.i | 20 | 11.d | odd | 10 | 1 | ||
3872.2.c.i | 20 | 88.p | odd | 10 | 1 |
Hecke kernels
This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(352, [\chi])\).