Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [968,2,Mod(245,968)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(968, base_ring=CyclotomicField(10))
chi = DirichletCharacter(H, H._module([0, 5, 8]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("968.245");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 968 = 2^{3} \cdot 11^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 968.o (of order \(10\), degree \(4\), not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(7.72951891566\) |
Analytic rank: | \(0\) |
Dimension: | \(40\) |
Relative dimension: | \(10\) over \(\Q(\zeta_{10})\) |
Twist minimal: | no (minimal twist has level 88) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{10}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
245.1 | −1.37413 | + | 0.334310i | −1.22337 | + | 0.397498i | 1.77647 | − | 0.918772i | 0.929834 | − | 1.27981i | 1.54819 | − | 0.955200i | 0.577320 | − | 1.77681i | −2.13395 | + | 1.85641i | −1.08841 | + | 0.790780i | −0.849862 | + | 2.06948i |
245.2 | −1.21055 | − | 0.731134i | −0.582243 | + | 0.189182i | 0.930886 | + | 1.77016i | −0.858340 | + | 1.18140i | 0.843155 | + | 0.196682i | −1.36837 | + | 4.21140i | 0.167332 | − | 2.82347i | −2.12383 | + | 1.54306i | 1.90283 | − | 0.802592i |
245.3 | −0.742578 | + | 1.20357i | 1.22337 | − | 0.397498i | −0.897156 | − | 1.78749i | −0.929834 | + | 1.27981i | −0.430033 | + | 1.76759i | 0.577320 | − | 1.77681i | 2.81757 | + | 0.247559i | −1.08841 | + | 0.790780i | −0.849862 | − | 2.06948i |
245.4 | −0.210425 | − | 1.39847i | −2.32812 | + | 0.756451i | −1.91144 | + | 0.588548i | −0.117836 | + | 0.162187i | 1.54777 | + | 3.09663i | 0.725001 | − | 2.23132i | 1.22528 | + | 2.54925i | 2.42086 | − | 1.75886i | 0.251609 | + | 0.130662i |
245.5 | 0.121361 | − | 1.40900i | 2.62285 | − | 0.852217i | −1.97054 | − | 0.341993i | −1.70795 | + | 2.35079i | −0.882460 | − | 3.79902i | −0.730368 | + | 2.24784i | −0.721013 | + | 2.73498i | 3.72604 | − | 2.70713i | 3.10498 | + | 2.69179i |
245.6 | 0.321268 | + | 1.37724i | 0.582243 | − | 0.189182i | −1.79357 | + | 0.884925i | 0.858340 | − | 1.18140i | 0.447605 | + | 0.741110i | −1.36837 | + | 4.21140i | −1.79497 | − | 2.18588i | −2.12383 | + | 1.54306i | 1.90283 | + | 0.802592i |
245.7 | 1.00414 | − | 0.995839i | 0.826127 | − | 0.268425i | 0.0166095 | − | 1.99993i | 2.15963 | − | 2.97247i | 0.562242 | − | 1.09223i | 0.369362 | − | 1.13678i | −1.97493 | − | 2.02476i | −1.81662 | + | 1.31985i | −0.791527 | − | 5.13543i |
245.8 | 1.25740 | − | 0.647266i | −0.826127 | + | 0.268425i | 1.16209 | − | 1.62774i | −2.15963 | + | 2.97247i | −0.865027 | + | 0.872241i | 0.369362 | − | 1.13678i | 0.407629 | − | 2.79890i | −1.81662 | + | 1.31985i | −0.791527 | + | 5.13543i |
245.9 | 1.26500 | + | 0.632278i | 2.32812 | − | 0.756451i | 1.20045 | + | 1.59966i | 0.117836 | − | 0.162187i | 3.42336 | + | 0.515106i | 0.725001 | − | 2.23132i | 0.507138 | + | 2.78259i | 2.42086 | − | 1.75886i | 0.251609 | − | 0.130662i |
245.10 | 1.37754 | + | 0.319983i | −2.62285 | + | 0.852217i | 1.79522 | + | 0.881578i | 1.70795 | − | 2.35079i | −3.88578 | + | 0.334692i | −0.730368 | + | 2.24784i | 2.19090 | + | 1.78885i | 3.72604 | − | 2.70713i | 3.10498 | − | 2.69179i |
269.1 | −1.40939 | + | 0.116729i | 0.317655 | − | 0.437215i | 1.97275 | − | 0.329033i | −2.75892 | − | 0.896426i | −0.396664 | + | 0.653285i | 2.10709 | − | 1.53089i | −2.74196 | + | 0.694011i | 0.836799 | + | 2.57540i | 3.99302 | + | 0.941367i |
269.2 | −1.19831 | + | 0.751039i | −1.67918 | + | 2.31119i | 0.871881 | − | 1.79995i | 2.48027 | + | 0.805887i | 0.276378 | − | 4.03065i | 0.158860 | − | 0.115419i | 0.307053 | + | 2.81171i | −1.59492 | − | 4.90866i | −3.57737 | + | 0.897076i |
269.3 | −0.725319 | − | 1.21405i | 1.10501 | − | 1.52092i | −0.947824 | + | 1.76114i | −0.468972 | − | 0.152378i | −2.64796 | − | 0.238387i | 0.141392 | − | 0.102727i | 2.82559 | − | 0.126687i | −0.165095 | − | 0.508111i | 0.155160 | + | 0.679877i |
269.4 | −0.548639 | + | 1.30345i | 0.188809 | − | 0.259874i | −1.39799 | − | 1.43025i | −1.22432 | − | 0.397805i | 0.235146 | + | 0.388681i | −2.67516 | + | 1.94362i | 2.63126 | − | 1.03752i | 0.895166 | + | 2.75504i | 1.19023 | − | 1.37759i |
269.5 | −0.126804 | − | 1.40852i | −1.10501 | + | 1.52092i | −1.96784 | + | 0.357211i | 0.468972 | + | 0.152378i | 2.28236 | + | 1.36357i | 0.141392 | − | 0.102727i | 0.752668 | + | 2.72644i | −0.165095 | − | 0.508111i | 0.155160 | − | 0.679877i |
269.6 | 0.301096 | + | 1.38179i | 1.50170 | − | 2.06692i | −1.81868 | + | 0.832103i | 2.56349 | + | 0.832928i | 3.30820 | + | 1.45270i | 3.19487 | − | 2.32121i | −1.69739 | − | 2.26249i | −1.08998 | − | 3.35462i | −0.379074 | + | 3.79299i |
269.7 | 0.568603 | + | 1.29487i | −1.50170 | + | 2.06692i | −1.35338 | + | 1.47254i | −2.56349 | − | 0.832928i | −3.53026 | − | 0.769256i | 3.19487 | − | 2.32121i | −2.67628 | − | 0.915165i | −1.08998 | − | 3.35462i | −0.379074 | − | 3.79299i |
269.8 | 1.20883 | − | 0.733982i | −0.317655 | + | 0.437215i | 0.922541 | − | 1.77452i | 2.75892 | + | 0.896426i | −0.0630835 | + | 0.761672i | 2.10709 | − | 1.53089i | −0.187268 | − | 2.82222i | 0.836799 | + | 2.57540i | 3.99302 | − | 0.941367i |
269.9 | 1.21001 | + | 0.732035i | −0.188809 | + | 0.259874i | 0.928249 | + | 1.77154i | 1.22432 | + | 0.397805i | −0.418698 | + | 0.176235i | −2.67516 | + | 1.94362i | −0.173638 | + | 2.82309i | 0.895166 | + | 2.75504i | 1.19023 | + | 1.37759i |
269.10 | 1.41090 | − | 0.0967440i | 1.67918 | − | 2.31119i | 1.98128 | − | 0.272992i | −2.48027 | − | 0.805887i | 2.14556 | − | 3.42332i | 0.158860 | − | 0.115419i | 2.76898 | − | 0.576842i | −1.59492 | − | 4.90866i | −3.57737 | − | 0.897076i |
See all 40 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
8.b | even | 2 | 1 | inner |
11.c | even | 5 | 1 | inner |
88.o | even | 10 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 968.2.o.i | 40 | |
8.b | even | 2 | 1 | inner | 968.2.o.i | 40 | |
11.b | odd | 2 | 1 | 88.2.o.a | ✓ | 40 | |
11.c | even | 5 | 1 | 968.2.c.i | 20 | ||
11.c | even | 5 | 2 | 968.2.o.d | 40 | ||
11.c | even | 5 | 1 | inner | 968.2.o.i | 40 | |
11.d | odd | 10 | 1 | 88.2.o.a | ✓ | 40 | |
11.d | odd | 10 | 1 | 968.2.c.h | 20 | ||
11.d | odd | 10 | 2 | 968.2.o.j | 40 | ||
33.d | even | 2 | 1 | 792.2.br.b | 40 | ||
33.f | even | 10 | 1 | 792.2.br.b | 40 | ||
44.c | even | 2 | 1 | 352.2.w.a | 40 | ||
44.g | even | 10 | 1 | 352.2.w.a | 40 | ||
44.g | even | 10 | 1 | 3872.2.c.h | 20 | ||
44.h | odd | 10 | 1 | 3872.2.c.i | 20 | ||
88.b | odd | 2 | 1 | 88.2.o.a | ✓ | 40 | |
88.g | even | 2 | 1 | 352.2.w.a | 40 | ||
88.k | even | 10 | 1 | 352.2.w.a | 40 | ||
88.k | even | 10 | 1 | 3872.2.c.h | 20 | ||
88.l | odd | 10 | 1 | 3872.2.c.i | 20 | ||
88.o | even | 10 | 1 | 968.2.c.i | 20 | ||
88.o | even | 10 | 2 | 968.2.o.d | 40 | ||
88.o | even | 10 | 1 | inner | 968.2.o.i | 40 | |
88.p | odd | 10 | 1 | 88.2.o.a | ✓ | 40 | |
88.p | odd | 10 | 1 | 968.2.c.h | 20 | ||
88.p | odd | 10 | 2 | 968.2.o.j | 40 | ||
264.m | even | 2 | 1 | 792.2.br.b | 40 | ||
264.u | even | 10 | 1 | 792.2.br.b | 40 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
88.2.o.a | ✓ | 40 | 11.b | odd | 2 | 1 | |
88.2.o.a | ✓ | 40 | 11.d | odd | 10 | 1 | |
88.2.o.a | ✓ | 40 | 88.b | odd | 2 | 1 | |
88.2.o.a | ✓ | 40 | 88.p | odd | 10 | 1 | |
352.2.w.a | 40 | 44.c | even | 2 | 1 | ||
352.2.w.a | 40 | 44.g | even | 10 | 1 | ||
352.2.w.a | 40 | 88.g | even | 2 | 1 | ||
352.2.w.a | 40 | 88.k | even | 10 | 1 | ||
792.2.br.b | 40 | 33.d | even | 2 | 1 | ||
792.2.br.b | 40 | 33.f | even | 10 | 1 | ||
792.2.br.b | 40 | 264.m | even | 2 | 1 | ||
792.2.br.b | 40 | 264.u | even | 10 | 1 | ||
968.2.c.h | 20 | 11.d | odd | 10 | 1 | ||
968.2.c.h | 20 | 88.p | odd | 10 | 1 | ||
968.2.c.i | 20 | 11.c | even | 5 | 1 | ||
968.2.c.i | 20 | 88.o | even | 10 | 1 | ||
968.2.o.d | 40 | 11.c | even | 5 | 2 | ||
968.2.o.d | 40 | 88.o | even | 10 | 2 | ||
968.2.o.i | 40 | 1.a | even | 1 | 1 | trivial | |
968.2.o.i | 40 | 8.b | even | 2 | 1 | inner | |
968.2.o.i | 40 | 11.c | even | 5 | 1 | inner | |
968.2.o.i | 40 | 88.o | even | 10 | 1 | inner | |
968.2.o.j | 40 | 11.d | odd | 10 | 2 | ||
968.2.o.j | 40 | 88.p | odd | 10 | 2 | ||
3872.2.c.h | 20 | 44.g | even | 10 | 1 | ||
3872.2.c.h | 20 | 88.k | even | 10 | 1 | ||
3872.2.c.i | 20 | 44.h | odd | 10 | 1 | ||
3872.2.c.i | 20 | 88.l | odd | 10 | 1 |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(968, [\chi])\):
\( T_{3}^{40} - 15 T_{3}^{38} + 181 T_{3}^{36} - 1921 T_{3}^{34} + 18015 T_{3}^{32} - 120568 T_{3}^{30} + \cdots + 14641 \) |
\( T_{5}^{40} - 23 T_{5}^{38} + 425 T_{5}^{36} - 7117 T_{5}^{34} + 97237 T_{5}^{32} - 998258 T_{5}^{30} + \cdots + 16777216 \) |
\( T_{7}^{20} - 5 T_{7}^{19} + 31 T_{7}^{18} - 147 T_{7}^{17} + 691 T_{7}^{16} - 1836 T_{7}^{15} + \cdots + 4096 \) |