Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [968,2,Mod(485,968)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(968, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 1, 0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("968.485");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 968.c (of order , degree , minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Coefficient field: | |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | no (minimal twist has level 88) |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a basis for the coefficient ring described below. We also show the integral -expansion of the trace form.
Basis of coefficient ring in terms of a root of
:
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
485.1 |
|
−1.40720 | − | 0.140637i | 2.55485i | 1.96044 | + | 0.395809i | 2.69541i | 0.359306 | − | 3.59519i | 3.94908 | −2.70308 | − | 0.832694i | −3.52726 | 0.379074 | − | 3.79299i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
485.2 | −1.40720 | + | 0.140637i | − | 2.55485i | 1.96044 | − | 0.395809i | − | 2.69541i | 0.359306 | + | 3.59519i | 3.94908 | −2.70308 | + | 0.832694i | −3.52726 | 0.379074 | + | 3.79299i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
485.3 | −1.30820 | − | 0.537231i | 1.28633i | 1.42276 | + | 1.40561i | 1.58193i | 0.691057 | − | 1.68277i | −1.86825 | −1.10612 | − | 2.60317i | 1.34535 | 0.849862 | − | 2.06948i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
485.4 | −1.30820 | + | 0.537231i | − | 1.28633i | 1.42276 | − | 1.40561i | − | 1.58193i | 0.691057 | + | 1.68277i | −1.86825 | −1.10612 | + | 2.60317i | 1.34535 | 0.849862 | + | 2.06948i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
485.5 | −1.07012 | − | 0.924577i | 0.321222i | 0.290315 | + | 1.97882i | − | 1.28733i | 0.296994 | − | 0.343746i | −3.30669 | 1.51890 | − | 2.38599i | 2.89682 | −1.19023 | + | 1.37759i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
485.6 | −1.07012 | + | 0.924577i | − | 0.321222i | 0.290315 | − | 1.97882i | 1.28733i | 0.296994 | + | 0.343746i | −3.30669 | 1.51890 | + | 2.38599i | 2.89682 | −1.19023 | − | 1.37759i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
485.7 | −0.549610 | − | 1.30305i | 0.612207i | −1.39586 | + | 1.43233i | − | 1.46030i | 0.797733 | − | 0.336475i | 4.42813 | 2.63357 | + | 1.03164i | 2.62520 | −1.90283 | + | 0.802592i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
485.8 | −0.549610 | + | 1.30305i | − | 0.612207i | −1.39586 | − | 1.43233i | 1.46030i | 0.797733 | + | 0.336475i | 4.42813 | 2.63357 | − | 1.03164i | 2.62520 | −1.90283 | − | 0.802592i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
485.9 | −0.343983 | − | 1.37174i | − | 2.85679i | −1.76335 | + | 0.943713i | 2.60791i | −3.91878 | + | 0.982689i | 0.196362 | 1.90109 | + | 2.09424i | −5.16127 | 3.57737 | − | 0.897076i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
485.10 | −0.343983 | + | 1.37174i | 2.85679i | −1.76335 | − | 0.943713i | − | 2.60791i | −3.91878 | − | 0.982689i | 0.196362 | 1.90109 | − | 2.09424i | −5.16127 | 3.57737 | + | 0.897076i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
485.11 | 0.324509 | − | 1.37648i | 0.540427i | −1.78939 | − | 0.893360i | − | 2.90090i | 0.743887 | + | 0.175374i | 2.60451 | −1.81036 | + | 2.17315i | 2.70794 | −3.99302 | − | 0.941367i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
485.12 | 0.324509 | + | 1.37648i | − | 0.540427i | −1.78939 | + | 0.893360i | 2.90090i | 0.743887 | − | 0.175374i | 2.60451 | −1.81036 | − | 2.17315i | 2.70794 | −3.99302 | + | 0.941367i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
485.13 | 0.651763 | − | 1.25507i | 2.44793i | −1.15041 | − | 1.63602i | − | 0.200474i | 3.07232 | + | 1.59547i | −2.34615 | −2.80312 | + | 0.377551i | −2.99235 | −0.251609 | − | 0.130662i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
485.14 | 0.651763 | + | 1.25507i | − | 2.44793i | −1.15041 | + | 1.63602i | 0.200474i | 3.07232 | − | 1.59547i | −2.34615 | −2.80312 | − | 0.377551i | −2.99235 | −0.251609 | + | 0.130662i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
485.15 | 0.926370 | − | 1.06857i | − | 2.75783i | −0.283677 | − | 1.97978i | − | 2.90574i | −2.94693 | − | 2.55477i | 2.36352 | −2.37832 | − | 1.53088i | −4.60564 | −3.10498 | − | 2.69179i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
485.16 | 0.926370 | + | 1.06857i | 2.75783i | −0.283677 | + | 1.97978i | 2.90574i | −2.94693 | + | 2.55477i | 2.36352 | −2.37832 | + | 1.53088i | −4.60564 | −3.10498 | + | 2.69179i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
485.17 | 1.37876 | − | 0.314658i | 1.87996i | 1.80198 | − | 0.867678i | − | 0.493106i | 0.591545 | + | 2.59203i | 0.174770 | 2.21148 | − | 1.76333i | −0.534260 | −0.155160 | − | 0.679877i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
485.18 | 1.37876 | + | 0.314658i | − | 1.87996i | 1.80198 | + | 0.867678i | 0.493106i | 0.591545 | − | 2.59203i | 0.174770 | 2.21148 | + | 1.76333i | −0.534260 | −0.155160 | + | 0.679877i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
485.19 | 1.39771 | − | 0.215430i | − | 0.868641i | 1.90718 | − | 0.602216i | 3.67418i | −0.187131 | − | 1.21411i | −1.19528 | 2.53595 | − | 1.25259i | 2.24546 | 0.791527 | + | 5.13543i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
485.20 | 1.39771 | + | 0.215430i | 0.868641i | 1.90718 | + | 0.602216i | − | 3.67418i | −0.187131 | + | 1.21411i | −1.19528 | 2.53595 | + | 1.25259i | 2.24546 | 0.791527 | − | 5.13543i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
8.b | even | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 968.2.c.h | 20 | |
4.b | odd | 2 | 1 | 3872.2.c.h | 20 | ||
8.b | even | 2 | 1 | inner | 968.2.c.h | 20 | |
8.d | odd | 2 | 1 | 3872.2.c.h | 20 | ||
11.b | odd | 2 | 1 | 968.2.c.i | 20 | ||
11.c | even | 5 | 2 | 88.2.o.a | ✓ | 40 | |
11.c | even | 5 | 2 | 968.2.o.j | 40 | ||
11.d | odd | 10 | 2 | 968.2.o.d | 40 | ||
11.d | odd | 10 | 2 | 968.2.o.i | 40 | ||
33.h | odd | 10 | 2 | 792.2.br.b | 40 | ||
44.c | even | 2 | 1 | 3872.2.c.i | 20 | ||
44.h | odd | 10 | 2 | 352.2.w.a | 40 | ||
88.b | odd | 2 | 1 | 968.2.c.i | 20 | ||
88.g | even | 2 | 1 | 3872.2.c.i | 20 | ||
88.l | odd | 10 | 2 | 352.2.w.a | 40 | ||
88.o | even | 10 | 2 | 88.2.o.a | ✓ | 40 | |
88.o | even | 10 | 2 | 968.2.o.j | 40 | ||
88.p | odd | 10 | 2 | 968.2.o.d | 40 | ||
88.p | odd | 10 | 2 | 968.2.o.i | 40 | ||
264.t | odd | 10 | 2 | 792.2.br.b | 40 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
88.2.o.a | ✓ | 40 | 11.c | even | 5 | 2 | |
88.2.o.a | ✓ | 40 | 88.o | even | 10 | 2 | |
352.2.w.a | 40 | 44.h | odd | 10 | 2 | ||
352.2.w.a | 40 | 88.l | odd | 10 | 2 | ||
792.2.br.b | 40 | 33.h | odd | 10 | 2 | ||
792.2.br.b | 40 | 264.t | odd | 10 | 2 | ||
968.2.c.h | 20 | 1.a | even | 1 | 1 | trivial | |
968.2.c.h | 20 | 8.b | even | 2 | 1 | inner | |
968.2.c.i | 20 | 11.b | odd | 2 | 1 | ||
968.2.c.i | 20 | 88.b | odd | 2 | 1 | ||
968.2.o.d | 40 | 11.d | odd | 10 | 2 | ||
968.2.o.d | 40 | 88.p | odd | 10 | 2 | ||
968.2.o.i | 40 | 11.d | odd | 10 | 2 | ||
968.2.o.i | 40 | 88.p | odd | 10 | 2 | ||
968.2.o.j | 40 | 11.c | even | 5 | 2 | ||
968.2.o.j | 40 | 88.o | even | 10 | 2 | ||
3872.2.c.h | 20 | 4.b | odd | 2 | 1 | ||
3872.2.c.h | 20 | 8.d | odd | 2 | 1 | ||
3872.2.c.i | 20 | 44.c | even | 2 | 1 | ||
3872.2.c.i | 20 | 88.g | even | 2 | 1 |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on :
|
|
|