Properties

Label 968.2.c.h
Level $968$
Weight $2$
Character orbit 968.c
Analytic conductor $7.730$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [968,2,Mod(485,968)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(968, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("968.485");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 968 = 2^{3} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 968.c (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.72951891566\)
Analytic rank: \(0\)
Dimension: \(20\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - x^{18} - 2 x^{16} - 2 x^{15} - 4 x^{14} - 4 x^{13} + 12 x^{12} + 16 x^{11} + 32 x^{9} + \cdots + 1024 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: no (minimal twist has level 88)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{19}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_{15} q^{2} + \beta_{10} q^{3} - \beta_{4} q^{4} + \beta_{6} q^{5} - \beta_{11} q^{6} + (\beta_{17} + 1) q^{7} + (\beta_{19} + \beta_{16} + \cdots + \beta_{4}) q^{8} + (\beta_{16} - \beta_{11} + \beta_{3}) q^{9}+ \cdots + ( - \beta_{17} - \beta_{16} + \beta_{14} + \cdots - 3) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 2 q^{4} - q^{6} + 10 q^{7} - 10 q^{9} - 10 q^{10} - 3 q^{12} - 4 q^{14} - 4 q^{15} + 10 q^{16} + 2 q^{17} - 5 q^{18} - 16 q^{20} - 4 q^{23} + 15 q^{24} - 2 q^{25} + 30 q^{26} - 14 q^{28} + 16 q^{30}+ \cdots - 72 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{20} - x^{18} - 2 x^{16} - 2 x^{15} - 4 x^{14} - 4 x^{13} + 12 x^{12} + 16 x^{11} + 32 x^{9} + \cdots + 1024 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu^{2} + \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( -\nu^{2} + \nu \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( - 3 \nu^{19} + 10 \nu^{18} + 39 \nu^{17} + 30 \nu^{16} + 18 \nu^{15} - 86 \nu^{14} - 128 \nu^{13} + \cdots - 2560 ) / 12288 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( \nu^{18} - \nu^{16} - 2 \nu^{14} - 2 \nu^{13} - 4 \nu^{12} - 4 \nu^{11} + 12 \nu^{10} + 16 \nu^{9} + \cdots - 256 ) / 256 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( - \nu^{19} - 10 \nu^{18} - 15 \nu^{17} - 6 \nu^{16} - 22 \nu^{15} - 26 \nu^{14} + 80 \nu^{13} + \cdots - 512 ) / 3072 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( 3 \nu^{19} + 2 \nu^{18} + 9 \nu^{17} + 6 \nu^{16} + 30 \nu^{15} + 14 \nu^{14} + 8 \nu^{13} + \cdots + 2560 ) / 3072 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( \nu^{19} + 2 \nu^{18} - \nu^{17} - 2 \nu^{16} + 6 \nu^{15} - 6 \nu^{14} + 20 \nu^{12} + 4 \nu^{11} + \cdots + 512 ) / 1024 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( \nu^{19} + 2 \nu^{18} + 3 \nu^{17} + 6 \nu^{16} + 10 \nu^{15} + 18 \nu^{14} - 4 \nu^{12} - 28 \nu^{11} + \cdots - 512 ) / 1024 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( - 7 \nu^{19} + 10 \nu^{18} - 21 \nu^{17} - 18 \nu^{16} + 26 \nu^{15} + 66 \nu^{14} + 16 \nu^{13} + \cdots + 3584 ) / 6144 \) Copy content Toggle raw display
\(\beta_{10}\)\(=\) \( ( 5 \nu^{19} - 6 \nu^{18} - \nu^{17} - 18 \nu^{16} - 30 \nu^{15} - 6 \nu^{14} - 52 \nu^{12} + \cdots - 2560 ) / 4096 \) Copy content Toggle raw display
\(\beta_{11}\)\(=\) \( ( - 5 \nu^{19} - 10 \nu^{18} + 17 \nu^{17} + 2 \nu^{16} + 46 \nu^{15} + 70 \nu^{14} + 32 \nu^{13} + \cdots + 6656 ) / 4096 \) Copy content Toggle raw display
\(\beta_{12}\)\(=\) \( ( - 15 \nu^{19} - 46 \nu^{18} - 45 \nu^{17} - 42 \nu^{16} + 42 \nu^{15} + 50 \nu^{14} + 128 \nu^{13} + \cdots + 24064 ) / 12288 \) Copy content Toggle raw display
\(\beta_{13}\)\(=\) \( ( - 5 \nu^{19} + 6 \nu^{18} - 3 \nu^{17} - 6 \nu^{16} + 10 \nu^{15} - 2 \nu^{14} + 48 \nu^{13} + \cdots + 4608 ) / 3072 \) Copy content Toggle raw display
\(\beta_{14}\)\(=\) \( ( - 23 \nu^{19} - 30 \nu^{18} - 21 \nu^{17} + 6 \nu^{16} + 10 \nu^{15} + 34 \nu^{14} + 192 \nu^{13} + \cdots + 7680 ) / 12288 \) Copy content Toggle raw display
\(\beta_{15}\)\(=\) \( ( \nu^{19} - \nu^{17} - 2 \nu^{15} - 2 \nu^{14} - 4 \nu^{13} - 4 \nu^{12} + 12 \nu^{11} + 16 \nu^{10} + \cdots - 256 \nu ) / 512 \) Copy content Toggle raw display
\(\beta_{16}\)\(=\) \( ( - 27 \nu^{19} - 70 \nu^{18} - 81 \nu^{17} - 18 \nu^{16} + 114 \nu^{15} + 314 \nu^{14} + \cdots + 30208 ) / 12288 \) Copy content Toggle raw display
\(\beta_{17}\)\(=\) \( ( \nu^{19} + \nu^{15} - 2 \nu^{14} - 6 \nu^{13} - 6 \nu^{12} - 12 \nu^{11} + 4 \nu^{10} + 12 \nu^{9} + \cdots - 384 ) / 384 \) Copy content Toggle raw display
\(\beta_{18}\)\(=\) \( ( - 47 \nu^{19} - 78 \nu^{18} - 45 \nu^{17} - 42 \nu^{16} + 10 \nu^{15} + 274 \nu^{14} + 384 \nu^{13} + \cdots + 19968 ) / 12288 \) Copy content Toggle raw display
\(\beta_{19}\)\(=\) \( ( 37 \nu^{19} + 34 \nu^{18} + 15 \nu^{17} + 54 \nu^{16} - 14 \nu^{15} - 166 \nu^{14} - 368 \nu^{13} + \cdots - 27136 ) / 6144 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{2} + \beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( -\beta_{2} + \beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( - 2 \beta_{18} + 2 \beta_{16} - 2 \beta_{15} + 2 \beta_{12} - 2 \beta_{11} + 2 \beta_{10} + \cdots - \beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( 2 \beta_{18} + 2 \beta_{17} - 2 \beta_{14} + 2 \beta_{13} - 2 \beta_{11} - 2 \beta_{7} + 2 \beta_{6} + \cdots + \beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( 2 \beta_{18} - 2 \beta_{17} - 2 \beta_{14} - 2 \beta_{13} - 2 \beta_{11} + 2 \beta_{7} + 2 \beta_{6} + \cdots + \beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( ( - 2 \beta_{18} + 2 \beta_{17} - 4 \beta_{15} + 2 \beta_{14} + 2 \beta_{13} + 4 \beta_{12} - 2 \beta_{11} + \cdots + 4 ) / 2 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( ( 4 \beta_{19} + 2 \beta_{18} - 2 \beta_{17} + 4 \beta_{15} + 10 \beta_{14} + 2 \beta_{13} + 2 \beta_{11} + \cdots + 8 ) / 2 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( ( - 4 \beta_{19} - 6 \beta_{18} - 2 \beta_{17} - 4 \beta_{15} - 6 \beta_{14} - 6 \beta_{13} + 8 \beta_{12} + \cdots - 8 ) / 2 \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( ( - 4 \beta_{19} + 2 \beta_{18} + 6 \beta_{17} + 4 \beta_{15} + 10 \beta_{14} - 6 \beta_{13} - 8 \beta_{12} + \cdots + 8 ) / 2 \) Copy content Toggle raw display
\(\nu^{10}\)\(=\) \( ( - 4 \beta_{19} + 10 \beta_{18} + 6 \beta_{17} + 8 \beta_{16} + 12 \beta_{15} - 14 \beta_{14} + \cdots + \beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{11}\)\(=\) \( ( 4 \beta_{19} + 10 \beta_{18} - 10 \beta_{17} - 8 \beta_{16} + 28 \beta_{15} + 2 \beta_{14} + 18 \beta_{13} + \cdots - 32 ) / 2 \) Copy content Toggle raw display
\(\nu^{12}\)\(=\) \( ( - 20 \beta_{19} - 6 \beta_{18} + 6 \beta_{17} - 8 \beta_{16} + 12 \beta_{15} + 34 \beta_{14} + \cdots - 32 ) / 2 \) Copy content Toggle raw display
\(\nu^{13}\)\(=\) \( ( 4 \beta_{19} - 22 \beta_{18} - 10 \beta_{17} + 24 \beta_{16} - 4 \beta_{15} + 18 \beta_{14} + 34 \beta_{13} + \cdots + 16 ) / 2 \) Copy content Toggle raw display
\(\nu^{14}\)\(=\) \( ( - 36 \beta_{19} + 58 \beta_{18} + 22 \beta_{17} - 56 \beta_{16} + 92 \beta_{15} - 14 \beta_{14} + \cdots + \beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{15}\)\(=\) \( ( 52 \beta_{19} + 42 \beta_{18} - 10 \beta_{17} - 8 \beta_{16} - 4 \beta_{15} - 14 \beta_{14} - 30 \beta_{13} + \cdots - 80 ) / 2 \) Copy content Toggle raw display
\(\nu^{16}\)\(=\) \( ( 12 \beta_{19} - 70 \beta_{18} - 42 \beta_{17} + 8 \beta_{16} + 156 \beta_{15} + 242 \beta_{14} + \cdots + 128 ) / 2 \) Copy content Toggle raw display
\(\nu^{17}\)\(=\) \( ( - 124 \beta_{19} + 42 \beta_{18} + 22 \beta_{17} - 104 \beta_{16} + 188 \beta_{15} - 14 \beta_{14} + \cdots - 336 ) / 2 \) Copy content Toggle raw display
\(\nu^{18}\)\(=\) \( ( - 132 \beta_{19} - 38 \beta_{18} - 170 \beta_{17} - 88 \beta_{16} + 220 \beta_{15} - 206 \beta_{14} + \cdots - 160 ) / 2 \) Copy content Toggle raw display
\(\nu^{19}\)\(=\) \( ( - 204 \beta_{19} - 118 \beta_{18} + 278 \beta_{17} + 56 \beta_{16} + 444 \beta_{15} - 142 \beta_{14} + \cdots - 176 ) / 2 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/968\mathbb{Z}\right)^\times\).

\(n\) \(485\) \(727\) \(849\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
485.1
−1.40720 + 0.140637i
−1.40720 0.140637i
−1.30820 + 0.537231i
−1.30820 0.537231i
−1.07012 + 0.924577i
−1.07012 0.924577i
−0.549610 + 1.30305i
−0.549610 1.30305i
−0.343983 + 1.37174i
−0.343983 1.37174i
0.324509 + 1.37648i
0.324509 1.37648i
0.651763 + 1.25507i
0.651763 1.25507i
0.926370 + 1.06857i
0.926370 1.06857i
1.37876 + 0.314658i
1.37876 0.314658i
1.39771 + 0.215430i
1.39771 0.215430i
−1.40720 0.140637i 2.55485i 1.96044 + 0.395809i 2.69541i 0.359306 3.59519i 3.94908 −2.70308 0.832694i −3.52726 0.379074 3.79299i
485.2 −1.40720 + 0.140637i 2.55485i 1.96044 0.395809i 2.69541i 0.359306 + 3.59519i 3.94908 −2.70308 + 0.832694i −3.52726 0.379074 + 3.79299i
485.3 −1.30820 0.537231i 1.28633i 1.42276 + 1.40561i 1.58193i 0.691057 1.68277i −1.86825 −1.10612 2.60317i 1.34535 0.849862 2.06948i
485.4 −1.30820 + 0.537231i 1.28633i 1.42276 1.40561i 1.58193i 0.691057 + 1.68277i −1.86825 −1.10612 + 2.60317i 1.34535 0.849862 + 2.06948i
485.5 −1.07012 0.924577i 0.321222i 0.290315 + 1.97882i 1.28733i 0.296994 0.343746i −3.30669 1.51890 2.38599i 2.89682 −1.19023 + 1.37759i
485.6 −1.07012 + 0.924577i 0.321222i 0.290315 1.97882i 1.28733i 0.296994 + 0.343746i −3.30669 1.51890 + 2.38599i 2.89682 −1.19023 1.37759i
485.7 −0.549610 1.30305i 0.612207i −1.39586 + 1.43233i 1.46030i 0.797733 0.336475i 4.42813 2.63357 + 1.03164i 2.62520 −1.90283 + 0.802592i
485.8 −0.549610 + 1.30305i 0.612207i −1.39586 1.43233i 1.46030i 0.797733 + 0.336475i 4.42813 2.63357 1.03164i 2.62520 −1.90283 0.802592i
485.9 −0.343983 1.37174i 2.85679i −1.76335 + 0.943713i 2.60791i −3.91878 + 0.982689i 0.196362 1.90109 + 2.09424i −5.16127 3.57737 0.897076i
485.10 −0.343983 + 1.37174i 2.85679i −1.76335 0.943713i 2.60791i −3.91878 0.982689i 0.196362 1.90109 2.09424i −5.16127 3.57737 + 0.897076i
485.11 0.324509 1.37648i 0.540427i −1.78939 0.893360i 2.90090i 0.743887 + 0.175374i 2.60451 −1.81036 + 2.17315i 2.70794 −3.99302 0.941367i
485.12 0.324509 + 1.37648i 0.540427i −1.78939 + 0.893360i 2.90090i 0.743887 0.175374i 2.60451 −1.81036 2.17315i 2.70794 −3.99302 + 0.941367i
485.13 0.651763 1.25507i 2.44793i −1.15041 1.63602i 0.200474i 3.07232 + 1.59547i −2.34615 −2.80312 + 0.377551i −2.99235 −0.251609 0.130662i
485.14 0.651763 + 1.25507i 2.44793i −1.15041 + 1.63602i 0.200474i 3.07232 1.59547i −2.34615 −2.80312 0.377551i −2.99235 −0.251609 + 0.130662i
485.15 0.926370 1.06857i 2.75783i −0.283677 1.97978i 2.90574i −2.94693 2.55477i 2.36352 −2.37832 1.53088i −4.60564 −3.10498 2.69179i
485.16 0.926370 + 1.06857i 2.75783i −0.283677 + 1.97978i 2.90574i −2.94693 + 2.55477i 2.36352 −2.37832 + 1.53088i −4.60564 −3.10498 + 2.69179i
485.17 1.37876 0.314658i 1.87996i 1.80198 0.867678i 0.493106i 0.591545 + 2.59203i 0.174770 2.21148 1.76333i −0.534260 −0.155160 0.679877i
485.18 1.37876 + 0.314658i 1.87996i 1.80198 + 0.867678i 0.493106i 0.591545 2.59203i 0.174770 2.21148 + 1.76333i −0.534260 −0.155160 + 0.679877i
485.19 1.39771 0.215430i 0.868641i 1.90718 0.602216i 3.67418i −0.187131 1.21411i −1.19528 2.53595 1.25259i 2.24546 0.791527 + 5.13543i
485.20 1.39771 + 0.215430i 0.868641i 1.90718 + 0.602216i 3.67418i −0.187131 + 1.21411i −1.19528 2.53595 + 1.25259i 2.24546 0.791527 5.13543i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 485.20
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
8.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 968.2.c.h 20
4.b odd 2 1 3872.2.c.h 20
8.b even 2 1 inner 968.2.c.h 20
8.d odd 2 1 3872.2.c.h 20
11.b odd 2 1 968.2.c.i 20
11.c even 5 2 88.2.o.a 40
11.c even 5 2 968.2.o.j 40
11.d odd 10 2 968.2.o.d 40
11.d odd 10 2 968.2.o.i 40
33.h odd 10 2 792.2.br.b 40
44.c even 2 1 3872.2.c.i 20
44.h odd 10 2 352.2.w.a 40
88.b odd 2 1 968.2.c.i 20
88.g even 2 1 3872.2.c.i 20
88.l odd 10 2 352.2.w.a 40
88.o even 10 2 88.2.o.a 40
88.o even 10 2 968.2.o.j 40
88.p odd 10 2 968.2.o.d 40
88.p odd 10 2 968.2.o.i 40
264.t odd 10 2 792.2.br.b 40
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
88.2.o.a 40 11.c even 5 2
88.2.o.a 40 88.o even 10 2
352.2.w.a 40 44.h odd 10 2
352.2.w.a 40 88.l odd 10 2
792.2.br.b 40 33.h odd 10 2
792.2.br.b 40 264.t odd 10 2
968.2.c.h 20 1.a even 1 1 trivial
968.2.c.h 20 8.b even 2 1 inner
968.2.c.i 20 11.b odd 2 1
968.2.c.i 20 88.b odd 2 1
968.2.o.d 40 11.d odd 10 2
968.2.o.d 40 88.p odd 10 2
968.2.o.i 40 11.d odd 10 2
968.2.o.i 40 88.p odd 10 2
968.2.o.j 40 11.c even 5 2
968.2.o.j 40 88.o even 10 2
3872.2.c.h 20 4.b odd 2 1
3872.2.c.h 20 8.d odd 2 1
3872.2.c.i 20 44.c even 2 1
3872.2.c.i 20 88.g even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(968, [\chi])\):

\( T_{3}^{20} + 35 T_{3}^{18} + 503 T_{3}^{16} + 3822 T_{3}^{14} + 16493 T_{3}^{12} + 40565 T_{3}^{10} + \cdots + 121 \) Copy content Toggle raw display
\( T_{5}^{20} + 51 T_{5}^{18} + 1082 T_{5}^{16} + 12427 T_{5}^{14} + 84082 T_{5}^{12} + 341655 T_{5}^{10} + \cdots + 4096 \) Copy content Toggle raw display
\( T_{7}^{10} - 5 T_{7}^{9} - 22 T_{7}^{8} + 111 T_{7}^{7} + 176 T_{7}^{6} - 775 T_{7}^{5} - 701 T_{7}^{4} + \cdots + 64 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{20} - T^{18} + \cdots + 1024 \) Copy content Toggle raw display
$3$ \( T^{20} + 35 T^{18} + \cdots + 121 \) Copy content Toggle raw display
$5$ \( T^{20} + 51 T^{18} + \cdots + 4096 \) Copy content Toggle raw display
$7$ \( (T^{10} - 5 T^{9} + \cdots + 64)^{2} \) Copy content Toggle raw display
$11$ \( T^{20} \) Copy content Toggle raw display
$13$ \( T^{20} + 119 T^{18} + \cdots + 5308416 \) Copy content Toggle raw display
$17$ \( (T^{10} - T^{9} + \cdots - 34029)^{2} \) Copy content Toggle raw display
$19$ \( T^{20} + 147 T^{18} + \cdots + 31036041 \) Copy content Toggle raw display
$23$ \( (T^{10} + 2 T^{9} + \cdots - 451584)^{2} \) Copy content Toggle raw display
$29$ \( T^{20} + \cdots + 527896576 \) Copy content Toggle raw display
$31$ \( (T^{10} - T^{9} + \cdots - 590144)^{2} \) Copy content Toggle raw display
$37$ \( T^{20} + \cdots + 478554034176 \) Copy content Toggle raw display
$41$ \( (T^{10} + T^{9} + \cdots + 685431)^{2} \) Copy content Toggle raw display
$43$ \( T^{20} + \cdots + 258242846976 \) Copy content Toggle raw display
$47$ \( (T^{10} - T^{9} + \cdots + 251136)^{2} \) Copy content Toggle raw display
$53$ \( T^{20} + \cdots + 4813029376 \) Copy content Toggle raw display
$59$ \( T^{20} + \cdots + 91511695081 \) Copy content Toggle raw display
$61$ \( T^{20} + \cdots + 47\!\cdots\!96 \) Copy content Toggle raw display
$67$ \( T^{20} + \cdots + 22416209899776 \) Copy content Toggle raw display
$71$ \( (T^{10} + 17 T^{9} + \cdots - 2283264)^{2} \) Copy content Toggle raw display
$73$ \( (T^{10} - T^{9} + \cdots + 4889699)^{2} \) Copy content Toggle raw display
$79$ \( (T^{10} + 29 T^{9} + \cdots + 36844544)^{2} \) Copy content Toggle raw display
$83$ \( T^{20} + \cdots + 17926799881 \) Copy content Toggle raw display
$89$ \( (T^{10} + 4 T^{9} + \cdots - 6007233744)^{2} \) Copy content Toggle raw display
$97$ \( (T^{10} - 5 T^{9} + \cdots - 140501)^{2} \) Copy content Toggle raw display
show more
show less