L(s) = 1 | + (1.37 + 0.314i)2-s − 1.87i·3-s + (1.80 + 0.867i)4-s + 0.493i·5-s + (0.591 − 2.59i)6-s + 0.174·7-s + (2.21 + 1.76i)8-s − 0.534·9-s + (−0.155 + 0.679i)10-s + (1.63 − 3.38i)12-s − 5.51i·13-s + (0.240 + 0.0549i)14-s + 0.927·15-s + (2.49 + 3.12i)16-s − 0.678·17-s + (−0.736 − 0.168i)18-s + ⋯ |
L(s) = 1 | + (0.974 + 0.222i)2-s − 1.08i·3-s + (0.900 + 0.433i)4-s + 0.220i·5-s + (0.241 − 1.05i)6-s + 0.0660·7-s + (0.781 + 0.623i)8-s − 0.178·9-s + (−0.0490 + 0.214i)10-s + (0.470 − 0.977i)12-s − 1.53i·13-s + (0.0644 + 0.0146i)14-s + 0.239·15-s + (0.623 + 0.781i)16-s − 0.164·17-s + (−0.173 − 0.0396i)18-s + ⋯ |
Λ(s)=(=(968s/2ΓC(s)L(s)(0.781+0.623i)Λ(2−s)
Λ(s)=(=(968s/2ΓC(s+1/2)L(s)(0.781+0.623i)Λ(1−s)
Degree: |
2 |
Conductor: |
968
= 23⋅112
|
Sign: |
0.781+0.623i
|
Analytic conductor: |
7.72951 |
Root analytic conductor: |
2.78020 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ968(485,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 968, ( :1/2), 0.781+0.623i)
|
Particular Values
L(1) |
≈ |
2.96202−1.03633i |
L(21) |
≈ |
2.96202−1.03633i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−1.37−0.314i)T |
| 11 | 1 |
good | 3 | 1+1.87iT−3T2 |
| 5 | 1−0.493iT−5T2 |
| 7 | 1−0.174T+7T2 |
| 13 | 1+5.51iT−13T2 |
| 17 | 1+0.678T+17T2 |
| 19 | 1−0.437iT−19T2 |
| 23 | 1−6.88T+23T2 |
| 29 | 1−1.41iT−29T2 |
| 31 | 1+4.17T+31T2 |
| 37 | 1−6.52iT−37T2 |
| 41 | 1+9.78T+41T2 |
| 43 | 1+8.22iT−43T2 |
| 47 | 1−7.75T+47T2 |
| 53 | 1−9.91iT−53T2 |
| 59 | 1+9.45iT−59T2 |
| 61 | 1−9.60iT−61T2 |
| 67 | 1+5.24iT−67T2 |
| 71 | 1−4.61T+71T2 |
| 73 | 1+6.85T+73T2 |
| 79 | 1+6.77T+79T2 |
| 83 | 1−7.28iT−83T2 |
| 89 | 1+9.61T+89T2 |
| 97 | 1−3.35T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.28071517965207541241693706936, −8.758574808239847694797530786248, −7.919270338354706520092549661030, −7.17222617322004455602549030534, −6.63464133362946486754019910229, −5.61076259342448570368284218468, −4.84147933377345988747747312986, −3.43692019599691049251092601791, −2.60464750423640798471752386560, −1.26001895355764569819536841474,
1.64239094254195054810400078110, 3.04143979717963280657257944873, 4.04771529307581140014110776940, 4.68611493365299725731799295830, 5.38185629742278033600226171642, 6.63047710731879886484650932140, 7.23836636624702271554847000713, 8.749424306163128444719080453125, 9.412114372747369386056249802151, 10.21965636984578522824572563519