L(s) = 1 | + (1.37 + 0.314i)2-s − 1.87i·3-s + (1.80 + 0.867i)4-s + 0.493i·5-s + (0.591 − 2.59i)6-s + 0.174·7-s + (2.21 + 1.76i)8-s − 0.534·9-s + (−0.155 + 0.679i)10-s + (1.63 − 3.38i)12-s − 5.51i·13-s + (0.240 + 0.0549i)14-s + 0.927·15-s + (2.49 + 3.12i)16-s − 0.678·17-s + (−0.736 − 0.168i)18-s + ⋯ |
L(s) = 1 | + (0.974 + 0.222i)2-s − 1.08i·3-s + (0.900 + 0.433i)4-s + 0.220i·5-s + (0.241 − 1.05i)6-s + 0.0660·7-s + (0.781 + 0.623i)8-s − 0.178·9-s + (−0.0490 + 0.214i)10-s + (0.470 − 0.977i)12-s − 1.53i·13-s + (0.0644 + 0.0146i)14-s + 0.239·15-s + (0.623 + 0.781i)16-s − 0.164·17-s + (−0.173 − 0.0396i)18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 968 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.781 + 0.623i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 968 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.781 + 0.623i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.96202 - 1.03633i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.96202 - 1.03633i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1.37 - 0.314i)T \) |
| 11 | \( 1 \) |
good | 3 | \( 1 + 1.87iT - 3T^{2} \) |
| 5 | \( 1 - 0.493iT - 5T^{2} \) |
| 7 | \( 1 - 0.174T + 7T^{2} \) |
| 13 | \( 1 + 5.51iT - 13T^{2} \) |
| 17 | \( 1 + 0.678T + 17T^{2} \) |
| 19 | \( 1 - 0.437iT - 19T^{2} \) |
| 23 | \( 1 - 6.88T + 23T^{2} \) |
| 29 | \( 1 - 1.41iT - 29T^{2} \) |
| 31 | \( 1 + 4.17T + 31T^{2} \) |
| 37 | \( 1 - 6.52iT - 37T^{2} \) |
| 41 | \( 1 + 9.78T + 41T^{2} \) |
| 43 | \( 1 + 8.22iT - 43T^{2} \) |
| 47 | \( 1 - 7.75T + 47T^{2} \) |
| 53 | \( 1 - 9.91iT - 53T^{2} \) |
| 59 | \( 1 + 9.45iT - 59T^{2} \) |
| 61 | \( 1 - 9.60iT - 61T^{2} \) |
| 67 | \( 1 + 5.24iT - 67T^{2} \) |
| 71 | \( 1 - 4.61T + 71T^{2} \) |
| 73 | \( 1 + 6.85T + 73T^{2} \) |
| 79 | \( 1 + 6.77T + 79T^{2} \) |
| 83 | \( 1 - 7.28iT - 83T^{2} \) |
| 89 | \( 1 + 9.61T + 89T^{2} \) |
| 97 | \( 1 - 3.35T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.28071517965207541241693706936, −8.758574808239847694797530786248, −7.919270338354706520092549661030, −7.17222617322004455602549030534, −6.63464133362946486754019910229, −5.61076259342448570368284218468, −4.84147933377345988747747312986, −3.43692019599691049251092601791, −2.60464750423640798471752386560, −1.26001895355764569819536841474,
1.64239094254195054810400078110, 3.04143979717963280657257944873, 4.04771529307581140014110776940, 4.68611493365299725731799295830, 5.38185629742278033600226171642, 6.63047710731879886484650932140, 7.23836636624702271554847000713, 8.749424306163128444719080453125, 9.412114372747369386056249802151, 10.21965636984578522824572563519