L(s) = 1 | + (1.25 + 0.910i)3-s + (0.431 + 1.32i)9-s + (−0.0855 − 0.996i)11-s + (1.74 + 0.859i)17-s + (0.0798 − 0.151i)19-s + (0.696 − 0.717i)25-s + (−0.190 + 0.584i)27-s + (0.799 − 1.32i)33-s + (−1.38 − 0.495i)41-s + (−1.29 + 1.48i)43-s + (0.516 + 0.856i)49-s + (1.40 + 2.66i)51-s + (0.237 − 0.116i)57-s + (0.683 − 0.243i)59-s + (−1.55 + 0.455i)67-s + ⋯ |
L(s) = 1 | + (1.25 + 0.910i)3-s + (0.431 + 1.32i)9-s + (−0.0855 − 0.996i)11-s + (1.74 + 0.859i)17-s + (0.0798 − 0.151i)19-s + (0.696 − 0.717i)25-s + (−0.190 + 0.584i)27-s + (0.799 − 1.32i)33-s + (−1.38 − 0.495i)41-s + (−1.29 + 1.48i)43-s + (0.516 + 0.856i)49-s + (1.40 + 2.66i)51-s + (0.237 − 0.116i)57-s + (0.683 − 0.243i)59-s + (−1.55 + 0.455i)67-s + ⋯ |
Λ(s)=(=(3872s/2ΓC(s)L(s)(0.704−0.709i)Λ(1−s)
Λ(s)=(=(3872s/2ΓC(s)L(s)(0.704−0.709i)Λ(1−s)
Degree: |
2 |
Conductor: |
3872
= 25⋅112
|
Sign: |
0.704−0.709i
|
Analytic conductor: |
1.93237 |
Root analytic conductor: |
1.39010 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3872(3503,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3872, ( :0), 0.704−0.709i)
|
Particular Values
L(21) |
≈ |
2.098828171 |
L(21) |
≈ |
2.098828171 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 11 | 1+(0.0855+0.996i)T |
good | 3 | 1+(−1.25−0.910i)T+(0.309+0.951i)T2 |
| 5 | 1+(−0.696+0.717i)T2 |
| 7 | 1+(−0.516−0.856i)T2 |
| 13 | 1+(−0.198−0.980i)T2 |
| 17 | 1+(−1.74−0.859i)T+(0.610+0.791i)T2 |
| 19 | 1+(−0.0798+0.151i)T+(−0.564−0.825i)T2 |
| 23 | 1+(0.654+0.755i)T2 |
| 29 | 1+(0.0285−0.999i)T2 |
| 31 | 1+(0.870+0.491i)T2 |
| 37 | 1+(−0.993+0.113i)T2 |
| 41 | 1+(1.38+0.495i)T+(0.774+0.633i)T2 |
| 43 | 1+(1.29−1.48i)T+(−0.142−0.989i)T2 |
| 47 | 1+(0.254−0.967i)T2 |
| 53 | 1+(−0.0855+0.996i)T2 |
| 59 | 1+(−0.683+0.243i)T+(0.774−0.633i)T2 |
| 61 | 1+(0.362+0.931i)T2 |
| 67 | 1+(1.55−0.455i)T+(0.841−0.540i)T2 |
| 71 | 1+(−0.941−0.336i)T2 |
| 73 | 1+(0.100+0.498i)T+(−0.921+0.389i)T2 |
| 79 | 1+(0.466+0.884i)T2 |
| 83 | 1+(0.614−0.0704i)T+(0.974−0.226i)T2 |
| 89 | 1+(0.282−1.96i)T+(−0.959−0.281i)T2 |
| 97 | 1+(−0.0526−0.0222i)T+(0.696+0.717i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.632307090768507216523028012127, −8.250193143162000944546242283681, −7.62965792862559665537273852143, −6.51797143304972866582115791978, −5.67301802582601766918792535891, −4.86001941190505896675027565306, −3.93713965444812598830810390589, −3.28387578298978949497134580313, −2.74382725622103481946497863980, −1.38641621338907185013499016185,
1.26504912898755318526177097343, 2.07163742079041253326576193788, 3.05464037221820705874749948846, 3.57462880689048540547153251559, 4.83955171355713846229992763088, 5.54297516892521503831729061705, 6.75966884236119482349628280699, 7.25972541848680278769392872455, 7.72135410211519533402015845136, 8.530928427437506503868224493222