L(s) = 1 | + (1.72 + 0.463i)2-s + (0.866 + 1.5i)3-s + (−0.691 − 0.399i)4-s + (0.707 − 0.707i)5-s + (0.802 + 2.99i)6-s + (−2.02 + 0.543i)7-s + (−6.07 − 6.07i)8-s + (−1.5 + 2.59i)9-s + (1.55 − 0.895i)10-s + (2.74 − 10.2i)11-s − 1.38i·12-s + (−1.20 + 12.9i)13-s − 3.75·14-s + (1.67 + 0.448i)15-s + (−6.08 − 10.5i)16-s + (−8.98 − 5.18i)17-s + ⋯ |
L(s) = 1 | + (0.864 + 0.231i)2-s + (0.288 + 0.5i)3-s + (−0.172 − 0.0998i)4-s + (0.141 − 0.141i)5-s + (0.133 + 0.498i)6-s + (−0.289 + 0.0775i)7-s + (−0.758 − 0.758i)8-s + (−0.166 + 0.288i)9-s + (0.155 − 0.0895i)10-s + (0.249 − 0.931i)11-s − 0.115i·12-s + (−0.0925 + 0.995i)13-s − 0.268·14-s + (0.111 + 0.0299i)15-s + (−0.380 − 0.658i)16-s + (−0.528 − 0.304i)17-s + ⋯ |
Λ(s)=(=(39s/2ΓC(s)L(s)(0.919−0.394i)Λ(3−s)
Λ(s)=(=(39s/2ΓC(s+1)L(s)(0.919−0.394i)Λ(1−s)
Degree: |
2 |
Conductor: |
39
= 3⋅13
|
Sign: |
0.919−0.394i
|
Analytic conductor: |
1.06267 |
Root analytic conductor: |
1.03086 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ39(28,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 39, ( :1), 0.919−0.394i)
|
Particular Values
L(23) |
≈ |
1.45493+0.298846i |
L(21) |
≈ |
1.45493+0.298846i |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(−0.866−1.5i)T |
| 13 | 1+(1.20−12.9i)T |
good | 2 | 1+(−1.72−0.463i)T+(3.46+2i)T2 |
| 5 | 1+(−0.707+0.707i)T−25iT2 |
| 7 | 1+(2.02−0.543i)T+(42.4−24.5i)T2 |
| 11 | 1+(−2.74+10.2i)T+(−104.−60.5i)T2 |
| 17 | 1+(8.98+5.18i)T+(144.5+250.i)T2 |
| 19 | 1+(−5.44−20.3i)T+(−312.+180.5i)T2 |
| 23 | 1+(−21.6+12.4i)T+(264.5−458.i)T2 |
| 29 | 1+(−12.1−20.9i)T+(−420.5+728.i)T2 |
| 31 | 1+(−18.1+18.1i)T−961iT2 |
| 37 | 1+(−7.82+29.2i)T+(−1.18e3−684.5i)T2 |
| 41 | 1+(−23.9−6.43i)T+(1.45e3+840.5i)T2 |
| 43 | 1+(72.3+41.7i)T+(924.5+1.60e3i)T2 |
| 47 | 1+(45.3+45.3i)T+2.20e3iT2 |
| 53 | 1+65.1T+2.80e3T2 |
| 59 | 1+(−74.5+19.9i)T+(3.01e3−1.74e3i)T2 |
| 61 | 1+(−13.2+23.0i)T+(−1.86e3−3.22e3i)T2 |
| 67 | 1+(−74.9−20.0i)T+(3.88e3+2.24e3i)T2 |
| 71 | 1+(27.4+102.i)T+(−4.36e3+2.52e3i)T2 |
| 73 | 1+(−82.5−82.5i)T+5.32e3iT2 |
| 79 | 1+70.2T+6.24e3T2 |
| 83 | 1+(−9.18+9.18i)T−6.88e3iT2 |
| 89 | 1+(14.7−55.1i)T+(−6.85e3−3.96e3i)T2 |
| 97 | 1+(11.7+43.6i)T+(−8.14e3+4.70e3i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−15.91353982482922048932140289316, −14.68613438070839078904209658002, −13.91711122540962545897873420322, −12.88355439851058989835281786426, −11.41112849165503445209337238060, −9.743355319017968805068222537288, −8.739533123004451261399699513109, −6.52827343986116804744454988478, −5.07246054828626169489668773777, −3.56769911569006616679307730878,
2.92169342248754909725123137733, 4.79039634929267519553093428192, 6.58690827256320507364615294741, 8.246624445899892142262824226560, 9.726751381064605614379747358780, 11.50741728523114003888227966359, 12.74746057620785631238627450389, 13.34625695598510133387796402438, 14.56176035026512926694462219145, 15.49775564830306010078881840343