L(s) = 1 | + (1.72 + 0.463i)2-s + (0.866 + 1.5i)3-s + (−0.691 − 0.399i)4-s + (0.707 − 0.707i)5-s + (0.802 + 2.99i)6-s + (−2.02 + 0.543i)7-s + (−6.07 − 6.07i)8-s + (−1.5 + 2.59i)9-s + (1.55 − 0.895i)10-s + (2.74 − 10.2i)11-s − 1.38i·12-s + (−1.20 + 12.9i)13-s − 3.75·14-s + (1.67 + 0.448i)15-s + (−6.08 − 10.5i)16-s + (−8.98 − 5.18i)17-s + ⋯ |
L(s) = 1 | + (0.864 + 0.231i)2-s + (0.288 + 0.5i)3-s + (−0.172 − 0.0998i)4-s + (0.141 − 0.141i)5-s + (0.133 + 0.498i)6-s + (−0.289 + 0.0775i)7-s + (−0.758 − 0.758i)8-s + (−0.166 + 0.288i)9-s + (0.155 − 0.0895i)10-s + (0.249 − 0.931i)11-s − 0.115i·12-s + (−0.0925 + 0.995i)13-s − 0.268·14-s + (0.111 + 0.0299i)15-s + (−0.380 − 0.658i)16-s + (−0.528 − 0.304i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 39 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.919 - 0.394i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 39 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.919 - 0.394i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(1.45493 + 0.298846i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.45493 + 0.298846i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-0.866 - 1.5i)T \) |
| 13 | \( 1 + (1.20 - 12.9i)T \) |
good | 2 | \( 1 + (-1.72 - 0.463i)T + (3.46 + 2i)T^{2} \) |
| 5 | \( 1 + (-0.707 + 0.707i)T - 25iT^{2} \) |
| 7 | \( 1 + (2.02 - 0.543i)T + (42.4 - 24.5i)T^{2} \) |
| 11 | \( 1 + (-2.74 + 10.2i)T + (-104. - 60.5i)T^{2} \) |
| 17 | \( 1 + (8.98 + 5.18i)T + (144.5 + 250. i)T^{2} \) |
| 19 | \( 1 + (-5.44 - 20.3i)T + (-312. + 180.5i)T^{2} \) |
| 23 | \( 1 + (-21.6 + 12.4i)T + (264.5 - 458. i)T^{2} \) |
| 29 | \( 1 + (-12.1 - 20.9i)T + (-420.5 + 728. i)T^{2} \) |
| 31 | \( 1 + (-18.1 + 18.1i)T - 961iT^{2} \) |
| 37 | \( 1 + (-7.82 + 29.2i)T + (-1.18e3 - 684.5i)T^{2} \) |
| 41 | \( 1 + (-23.9 - 6.43i)T + (1.45e3 + 840.5i)T^{2} \) |
| 43 | \( 1 + (72.3 + 41.7i)T + (924.5 + 1.60e3i)T^{2} \) |
| 47 | \( 1 + (45.3 + 45.3i)T + 2.20e3iT^{2} \) |
| 53 | \( 1 + 65.1T + 2.80e3T^{2} \) |
| 59 | \( 1 + (-74.5 + 19.9i)T + (3.01e3 - 1.74e3i)T^{2} \) |
| 61 | \( 1 + (-13.2 + 23.0i)T + (-1.86e3 - 3.22e3i)T^{2} \) |
| 67 | \( 1 + (-74.9 - 20.0i)T + (3.88e3 + 2.24e3i)T^{2} \) |
| 71 | \( 1 + (27.4 + 102. i)T + (-4.36e3 + 2.52e3i)T^{2} \) |
| 73 | \( 1 + (-82.5 - 82.5i)T + 5.32e3iT^{2} \) |
| 79 | \( 1 + 70.2T + 6.24e3T^{2} \) |
| 83 | \( 1 + (-9.18 + 9.18i)T - 6.88e3iT^{2} \) |
| 89 | \( 1 + (14.7 - 55.1i)T + (-6.85e3 - 3.96e3i)T^{2} \) |
| 97 | \( 1 + (11.7 + 43.6i)T + (-8.14e3 + 4.70e3i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−15.91353982482922048932140289316, −14.68613438070839078904209658002, −13.91711122540962545897873420322, −12.88355439851058989835281786426, −11.41112849165503445209337238060, −9.743355319017968805068222537288, −8.739533123004451261399699513109, −6.52827343986116804744454988478, −5.07246054828626169489668773777, −3.56769911569006616679307730878,
2.92169342248754909725123137733, 4.79039634929267519553093428192, 6.58690827256320507364615294741, 8.246624445899892142262824226560, 9.726751381064605614379747358780, 11.50741728523114003888227966359, 12.74746057620785631238627450389, 13.34625695598510133387796402438, 14.56176035026512926694462219145, 15.49775564830306010078881840343