L(s) = 1 | + (1.72 − 0.463i)2-s + (0.866 − 1.5i)3-s + (−0.691 + 0.399i)4-s + (0.707 + 0.707i)5-s + (0.802 − 2.99i)6-s + (−2.02 − 0.543i)7-s + (−6.07 + 6.07i)8-s + (−1.5 − 2.59i)9-s + (1.55 + 0.895i)10-s + (2.74 + 10.2i)11-s + 1.38i·12-s + (−1.20 − 12.9i)13-s − 3.75·14-s + (1.67 − 0.448i)15-s + (−6.08 + 10.5i)16-s + (−8.98 + 5.18i)17-s + ⋯ |
L(s) = 1 | + (0.864 − 0.231i)2-s + (0.288 − 0.5i)3-s + (−0.172 + 0.0998i)4-s + (0.141 + 0.141i)5-s + (0.133 − 0.498i)6-s + (−0.289 − 0.0775i)7-s + (−0.758 + 0.758i)8-s + (−0.166 − 0.288i)9-s + (0.155 + 0.0895i)10-s + (0.249 + 0.931i)11-s + 0.115i·12-s + (−0.0925 − 0.995i)13-s − 0.268·14-s + (0.111 − 0.0299i)15-s + (−0.380 + 0.658i)16-s + (−0.528 + 0.304i)17-s + ⋯ |
Λ(s)=(=(39s/2ΓC(s)L(s)(0.919+0.394i)Λ(3−s)
Λ(s)=(=(39s/2ΓC(s+1)L(s)(0.919+0.394i)Λ(1−s)
Degree: |
2 |
Conductor: |
39
= 3⋅13
|
Sign: |
0.919+0.394i
|
Analytic conductor: |
1.06267 |
Root analytic conductor: |
1.03086 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ39(7,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 39, ( :1), 0.919+0.394i)
|
Particular Values
L(23) |
≈ |
1.45493−0.298846i |
L(21) |
≈ |
1.45493−0.298846i |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(−0.866+1.5i)T |
| 13 | 1+(1.20+12.9i)T |
good | 2 | 1+(−1.72+0.463i)T+(3.46−2i)T2 |
| 5 | 1+(−0.707−0.707i)T+25iT2 |
| 7 | 1+(2.02+0.543i)T+(42.4+24.5i)T2 |
| 11 | 1+(−2.74−10.2i)T+(−104.+60.5i)T2 |
| 17 | 1+(8.98−5.18i)T+(144.5−250.i)T2 |
| 19 | 1+(−5.44+20.3i)T+(−312.−180.5i)T2 |
| 23 | 1+(−21.6−12.4i)T+(264.5+458.i)T2 |
| 29 | 1+(−12.1+20.9i)T+(−420.5−728.i)T2 |
| 31 | 1+(−18.1−18.1i)T+961iT2 |
| 37 | 1+(−7.82−29.2i)T+(−1.18e3+684.5i)T2 |
| 41 | 1+(−23.9+6.43i)T+(1.45e3−840.5i)T2 |
| 43 | 1+(72.3−41.7i)T+(924.5−1.60e3i)T2 |
| 47 | 1+(45.3−45.3i)T−2.20e3iT2 |
| 53 | 1+65.1T+2.80e3T2 |
| 59 | 1+(−74.5−19.9i)T+(3.01e3+1.74e3i)T2 |
| 61 | 1+(−13.2−23.0i)T+(−1.86e3+3.22e3i)T2 |
| 67 | 1+(−74.9+20.0i)T+(3.88e3−2.24e3i)T2 |
| 71 | 1+(27.4−102.i)T+(−4.36e3−2.52e3i)T2 |
| 73 | 1+(−82.5+82.5i)T−5.32e3iT2 |
| 79 | 1+70.2T+6.24e3T2 |
| 83 | 1+(−9.18−9.18i)T+6.88e3iT2 |
| 89 | 1+(14.7+55.1i)T+(−6.85e3+3.96e3i)T2 |
| 97 | 1+(11.7−43.6i)T+(−8.14e3−4.70e3i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−15.49775564830306010078881840343, −14.56176035026512926694462219145, −13.34625695598510133387796402438, −12.74746057620785631238627450389, −11.50741728523114003888227966359, −9.726751381064605614379747358780, −8.246624445899892142262824226560, −6.58690827256320507364615294741, −4.79039634929267519553093428192, −2.92169342248754909725123137733,
3.56769911569006616679307730878, 5.07246054828626169489668773777, 6.52827343986116804744454988478, 8.739533123004451261399699513109, 9.743355319017968805068222537288, 11.41112849165503445209337238060, 12.88355439851058989835281786426, 13.91711122540962545897873420322, 14.68613438070839078904209658002, 15.91353982482922048932140289316