L(s) = 1 | + (−0.5 + 0.866i)2-s + (0.5 − 0.866i)3-s + (0.500 + 0.866i)4-s − 5-s + (0.499 + 0.866i)6-s + (−1 − 1.73i)7-s − 3·8-s + (−0.499 − 0.866i)9-s + (0.5 − 0.866i)10-s + (1 − 1.73i)11-s + 12-s + (−3.5 − 0.866i)13-s + 1.99·14-s + (−0.5 + 0.866i)15-s + (0.500 − 0.866i)16-s + (3.5 + 6.06i)17-s + ⋯ |
L(s) = 1 | + (−0.353 + 0.612i)2-s + (0.288 − 0.499i)3-s + (0.250 + 0.433i)4-s − 0.447·5-s + (0.204 + 0.353i)6-s + (−0.377 − 0.654i)7-s − 1.06·8-s + (−0.166 − 0.288i)9-s + (0.158 − 0.273i)10-s + (0.301 − 0.522i)11-s + 0.288·12-s + (−0.970 − 0.240i)13-s + 0.534·14-s + (−0.129 + 0.223i)15-s + (0.125 − 0.216i)16-s + (0.848 + 1.47i)17-s + ⋯ |
Λ(s)=(=(39s/2ΓC(s)L(s)(0.859−0.511i)Λ(2−s)
Λ(s)=(=(39s/2ΓC(s+1/2)L(s)(0.859−0.511i)Λ(1−s)
Degree: |
2 |
Conductor: |
39
= 3⋅13
|
Sign: |
0.859−0.511i
|
Analytic conductor: |
0.311416 |
Root analytic conductor: |
0.558047 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ39(22,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 39, ( :1/2), 0.859−0.511i)
|
Particular Values
L(1) |
≈ |
0.658958+0.181103i |
L(21) |
≈ |
0.658958+0.181103i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(−0.5+0.866i)T |
| 13 | 1+(3.5+0.866i)T |
good | 2 | 1+(0.5−0.866i)T+(−1−1.73i)T2 |
| 5 | 1+T+5T2 |
| 7 | 1+(1+1.73i)T+(−3.5+6.06i)T2 |
| 11 | 1+(−1+1.73i)T+(−5.5−9.52i)T2 |
| 17 | 1+(−3.5−6.06i)T+(−8.5+14.7i)T2 |
| 19 | 1+(−3−5.19i)T+(−9.5+16.4i)T2 |
| 23 | 1+(−3+5.19i)T+(−11.5−19.9i)T2 |
| 29 | 1+(−0.5+0.866i)T+(−14.5−25.1i)T2 |
| 31 | 1−4T+31T2 |
| 37 | 1+(0.5−0.866i)T+(−18.5−32.0i)T2 |
| 41 | 1+(4.5−7.79i)T+(−20.5−35.5i)T2 |
| 43 | 1+(3+5.19i)T+(−21.5+37.2i)T2 |
| 47 | 1−6T+47T2 |
| 53 | 1+9T+53T2 |
| 59 | 1+(−29.5+51.0i)T2 |
| 61 | 1+(0.5+0.866i)T+(−30.5+52.8i)T2 |
| 67 | 1+(−1+1.73i)T+(−33.5−58.0i)T2 |
| 71 | 1+(3+5.19i)T+(−35.5+61.4i)T2 |
| 73 | 1−11T+73T2 |
| 79 | 1+4T+79T2 |
| 83 | 1+14T+83T2 |
| 89 | 1+(−7+12.1i)T+(−44.5−77.0i)T2 |
| 97 | 1+(−1−1.73i)T+(−48.5+84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−16.67964485929451701471305897548, −15.31436868569418472237139205121, −14.25352282411028397136124411118, −12.73289175444341950296811916307, −11.86794614489910264294294396928, −10.08439462454078301203589831316, −8.363264865171006164651980684627, −7.54477102164470802446718447887, −6.24892583756641342435496526807, −3.47426894868114625087598578954,
2.86393153909535063400258284725, 5.20432204657102172725166254858, 7.22047791579711791825933304934, 9.254398779241532270121720047097, 9.791768698484293397611172234114, 11.42867064720421448825118723410, 12.14357937143744666454386491571, 14.02499101548283092459780281457, 15.27243809376413943797361286045, 15.84408544761433403349579987483