L(s) = 1 | + (0.866 − 1.5i)3-s + (−0.866 + 0.5i)5-s + (−1 − 1.73i)9-s + (1.5 + 0.866i)11-s − i·13-s + 1.73i·15-s + (0.866 + 0.5i)17-s + (0.499 − 0.866i)25-s − 1.73·27-s + 29-s + (2.59 − 1.5i)33-s + (−1.5 − 0.866i)39-s + (1.73 + i)45-s + (−0.866 − 1.5i)47-s + (1.5 − 0.866i)51-s + ⋯ |
L(s) = 1 | + (0.866 − 1.5i)3-s + (−0.866 + 0.5i)5-s + (−1 − 1.73i)9-s + (1.5 + 0.866i)11-s − i·13-s + 1.73i·15-s + (0.866 + 0.5i)17-s + (0.499 − 0.866i)25-s − 1.73·27-s + 29-s + (2.59 − 1.5i)33-s + (−1.5 − 0.866i)39-s + (1.73 + i)45-s + (−0.866 − 1.5i)47-s + (1.5 − 0.866i)51-s + ⋯ |
Λ(s)=(=(3920s/2ΓC(s)L(s)(0.126+0.991i)Λ(1−s)
Λ(s)=(=(3920s/2ΓC(s)L(s)(0.126+0.991i)Λ(1−s)
Degree: |
2 |
Conductor: |
3920
= 24⋅5⋅72
|
Sign: |
0.126+0.991i
|
Analytic conductor: |
1.95633 |
Root analytic conductor: |
1.39869 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3920(1439,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3920, ( :0), 0.126+0.991i)
|
Particular Values
L(21) |
≈ |
1.641291919 |
L(21) |
≈ |
1.641291919 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1+(0.866−0.5i)T |
| 7 | 1 |
good | 3 | 1+(−0.866+1.5i)T+(−0.5−0.866i)T2 |
| 11 | 1+(−1.5−0.866i)T+(0.5+0.866i)T2 |
| 13 | 1+iT−T2 |
| 17 | 1+(−0.866−0.5i)T+(0.5+0.866i)T2 |
| 19 | 1+(0.5−0.866i)T2 |
| 23 | 1+(−0.5+0.866i)T2 |
| 29 | 1−T+T2 |
| 31 | 1+(0.5+0.866i)T2 |
| 37 | 1+(0.5−0.866i)T2 |
| 41 | 1+T2 |
| 43 | 1+T2 |
| 47 | 1+(0.866+1.5i)T+(−0.5+0.866i)T2 |
| 53 | 1+(0.5+0.866i)T2 |
| 59 | 1+(0.5+0.866i)T2 |
| 61 | 1+(−0.5+0.866i)T2 |
| 67 | 1+(−0.5−0.866i)T2 |
| 71 | 1−T2 |
| 73 | 1+(1.73+i)T+(0.5+0.866i)T2 |
| 79 | 1+(1.5−0.866i)T+(0.5−0.866i)T2 |
| 83 | 1+T2 |
| 89 | 1+(−0.5+0.866i)T2 |
| 97 | 1+iT−T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.311630600077863112621928465500, −7.71322676547030918159909370536, −7.07988781302823446588534541924, −6.63092495448071342563383752687, −5.82210702507639454374612060835, −4.48208332420018558220197383643, −3.54086961742850294143380672087, −3.00089807536480077262521595967, −1.91348192347442417615562820089, −0.995031354617777728326785980239,
1.33472995810036280332713341613, 2.93238948403121787022881030754, 3.49810450550787718276406414933, 4.27655559800699244905999742179, 4.61663693854520706083596093571, 5.65676714092821376924725208124, 6.64249872765774820952862356646, 7.59999495501815697869863599456, 8.410059671605904843041228079894, 8.863470281164058144540749964247