L(s) = 1 | + (0.866 + 1.5i)3-s + (−0.866 − 0.5i)5-s + (−1 + 1.73i)9-s + (1.5 − 0.866i)11-s + i·13-s − 1.73i·15-s + (0.866 − 0.5i)17-s + (0.499 + 0.866i)25-s − 1.73·27-s + 29-s + (2.59 + 1.5i)33-s + (−1.5 + 0.866i)39-s + (1.73 − i)45-s + (−0.866 + 1.5i)47-s + (1.5 + 0.866i)51-s + ⋯ |
L(s) = 1 | + (0.866 + 1.5i)3-s + (−0.866 − 0.5i)5-s + (−1 + 1.73i)9-s + (1.5 − 0.866i)11-s + i·13-s − 1.73i·15-s + (0.866 − 0.5i)17-s + (0.499 + 0.866i)25-s − 1.73·27-s + 29-s + (2.59 + 1.5i)33-s + (−1.5 + 0.866i)39-s + (1.73 − i)45-s + (−0.866 + 1.5i)47-s + (1.5 + 0.866i)51-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3920 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.126 - 0.991i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3920 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.126 - 0.991i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.641291919\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.641291919\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (0.866 + 0.5i)T \) |
| 7 | \( 1 \) |
good | 3 | \( 1 + (-0.866 - 1.5i)T + (-0.5 + 0.866i)T^{2} \) |
| 11 | \( 1 + (-1.5 + 0.866i)T + (0.5 - 0.866i)T^{2} \) |
| 13 | \( 1 - iT - T^{2} \) |
| 17 | \( 1 + (-0.866 + 0.5i)T + (0.5 - 0.866i)T^{2} \) |
| 19 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 23 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 29 | \( 1 - T + T^{2} \) |
| 31 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 37 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 41 | \( 1 + T^{2} \) |
| 43 | \( 1 + T^{2} \) |
| 47 | \( 1 + (0.866 - 1.5i)T + (-0.5 - 0.866i)T^{2} \) |
| 53 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 59 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 61 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 67 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 + (1.73 - i)T + (0.5 - 0.866i)T^{2} \) |
| 79 | \( 1 + (1.5 + 0.866i)T + (0.5 + 0.866i)T^{2} \) |
| 83 | \( 1 + T^{2} \) |
| 89 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 97 | \( 1 - iT - T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.863470281164058144540749964247, −8.410059671605904843041228079894, −7.59999495501815697869863599456, −6.64249872765774820952862356646, −5.65676714092821376924725208124, −4.61663693854520706083596093571, −4.27655559800699244905999742179, −3.49810450550787718276406414933, −2.93238948403121787022881030754, −1.33472995810036280332713341613,
0.995031354617777728326785980239, 1.91348192347442417615562820089, 3.00089807536480077262521595967, 3.54086961742850294143380672087, 4.48208332420018558220197383643, 5.82210702507639454374612060835, 6.63092495448071342563383752687, 7.07988781302823446588534541924, 7.71322676547030918159909370536, 8.311630600077863112621928465500