L(s) = 1 | − 1.73·3-s + i·5-s + 1.99·9-s + 1.73i·11-s + i·13-s − 1.73i·15-s + i·17-s − 25-s − 1.73·27-s + 29-s − 2.99i·33-s − 1.73i·39-s + 1.99i·45-s + 1.73·47-s − 1.73i·51-s + ⋯ |
L(s) = 1 | − 1.73·3-s + i·5-s + 1.99·9-s + 1.73i·11-s + i·13-s − 1.73i·15-s + i·17-s − 25-s − 1.73·27-s + 29-s − 2.99i·33-s − 1.73i·39-s + 1.99i·45-s + 1.73·47-s − 1.73i·51-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3920 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.866 - 0.5i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3920 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.866 - 0.5i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.5850731938\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.5850731938\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 - iT \) |
| 7 | \( 1 \) |
good | 3 | \( 1 + 1.73T + T^{2} \) |
| 11 | \( 1 - 1.73iT - T^{2} \) |
| 13 | \( 1 - iT - T^{2} \) |
| 17 | \( 1 - iT - T^{2} \) |
| 19 | \( 1 - T^{2} \) |
| 23 | \( 1 + T^{2} \) |
| 29 | \( 1 - T + T^{2} \) |
| 31 | \( 1 - T^{2} \) |
| 37 | \( 1 - T^{2} \) |
| 41 | \( 1 + T^{2} \) |
| 43 | \( 1 + T^{2} \) |
| 47 | \( 1 - 1.73T + T^{2} \) |
| 53 | \( 1 - T^{2} \) |
| 59 | \( 1 - T^{2} \) |
| 61 | \( 1 + T^{2} \) |
| 67 | \( 1 + T^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 + 2iT - T^{2} \) |
| 79 | \( 1 - 1.73iT - T^{2} \) |
| 83 | \( 1 + T^{2} \) |
| 89 | \( 1 + T^{2} \) |
| 97 | \( 1 - iT - T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.212531110865990179079740084984, −7.913735587951438152360833564461, −7.12066601210845365189225237981, −6.69862715546768388165979670082, −6.15302193392129514545646118067, −5.29037926303853323696174108194, −4.44956608790212105882203027814, −3.94389515701335131694057178352, −2.39958354495418204134704667338, −1.49788453221545786838645193554,
0.50673974312971847292206995767, 1.12405357878212052987835012073, 2.84011768945163756429693933205, 3.98375307145101670305929932306, 4.84211575406691721862244066989, 5.51702390320995492468018590750, 5.81441181110851486691691011909, 6.64286674807705175566655959991, 7.56253527107589767684483342693, 8.355439019255283775200337843968