L(s) = 1 | − 1.73·3-s − i·5-s + 1.99·9-s − 1.73i·11-s − i·13-s + 1.73i·15-s − i·17-s − 25-s − 1.73·27-s + 29-s + 2.99i·33-s + 1.73i·39-s − 1.99i·45-s + 1.73·47-s + 1.73i·51-s + ⋯ |
L(s) = 1 | − 1.73·3-s − i·5-s + 1.99·9-s − 1.73i·11-s − i·13-s + 1.73i·15-s − i·17-s − 25-s − 1.73·27-s + 29-s + 2.99i·33-s + 1.73i·39-s − 1.99i·45-s + 1.73·47-s + 1.73i·51-s + ⋯ |
Λ(s)=(=(3920s/2ΓC(s)L(s)(−0.866+0.5i)Λ(1−s)
Λ(s)=(=(3920s/2ΓC(s)L(s)(−0.866+0.5i)Λ(1−s)
Degree: |
2 |
Conductor: |
3920
= 24⋅5⋅72
|
Sign: |
−0.866+0.5i
|
Analytic conductor: |
1.95633 |
Root analytic conductor: |
1.39869 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3920(3039,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3920, ( :0), −0.866+0.5i)
|
Particular Values
L(21) |
≈ |
0.5850731938 |
L(21) |
≈ |
0.5850731938 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1+iT |
| 7 | 1 |
good | 3 | 1+1.73T+T2 |
| 11 | 1+1.73iT−T2 |
| 13 | 1+iT−T2 |
| 17 | 1+iT−T2 |
| 19 | 1−T2 |
| 23 | 1+T2 |
| 29 | 1−T+T2 |
| 31 | 1−T2 |
| 37 | 1−T2 |
| 41 | 1+T2 |
| 43 | 1+T2 |
| 47 | 1−1.73T+T2 |
| 53 | 1−T2 |
| 59 | 1−T2 |
| 61 | 1+T2 |
| 67 | 1+T2 |
| 71 | 1−T2 |
| 73 | 1−2iT−T2 |
| 79 | 1+1.73iT−T2 |
| 83 | 1+T2 |
| 89 | 1+T2 |
| 97 | 1+iT−T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.355439019255283775200337843968, −7.56253527107589767684483342693, −6.64286674807705175566655959991, −5.81441181110851486691691011909, −5.51702390320995492468018590750, −4.84211575406691721862244066989, −3.98375307145101670305929932306, −2.84011768945163756429693933205, −1.12405357878212052987835012073, −0.50673974312971847292206995767,
1.49788453221545786838645193554, 2.39958354495418204134704667338, 3.94389515701335131694057178352, 4.44956608790212105882203027814, 5.29037926303853323696174108194, 6.15302193392129514545646118067, 6.69862715546768388165979670082, 7.12066601210845365189225237981, 7.913735587951438152360833564461, 9.212531110865990179079740084984