L(s) = 1 | + (−0.433 + 1.90i)3-s + (0.222 − 0.974i)5-s + (0.781 + 0.623i)7-s + (−2.52 − 1.21i)9-s + (1.75 + 0.846i)15-s + (−1.52 + 1.21i)21-s + (−1.21 + 1.52i)23-s + (−0.900 − 0.433i)25-s + (2.19 − 2.74i)27-s + (0.777 + 0.974i)29-s + (0.781 − 0.623i)35-s + (−0.400 + 1.75i)41-s + (0.193 + 0.846i)43-s + (−1.74 + 2.19i)45-s + (−1.75 + 0.846i)47-s + ⋯ |
L(s) = 1 | + (−0.433 + 1.90i)3-s + (0.222 − 0.974i)5-s + (0.781 + 0.623i)7-s + (−2.52 − 1.21i)9-s + (1.75 + 0.846i)15-s + (−1.52 + 1.21i)21-s + (−1.21 + 1.52i)23-s + (−0.900 − 0.433i)25-s + (2.19 − 2.74i)27-s + (0.777 + 0.974i)29-s + (0.781 − 0.623i)35-s + (−0.400 + 1.75i)41-s + (0.193 + 0.846i)43-s + (−1.74 + 2.19i)45-s + (−1.75 + 0.846i)47-s + ⋯ |
Λ(s)=(=(3920s/2ΓC(s)L(s)(−0.871−0.490i)Λ(1−s)
Λ(s)=(=(3920s/2ΓC(s)L(s)(−0.871−0.490i)Λ(1−s)
Degree: |
2 |
Conductor: |
3920
= 24⋅5⋅72
|
Sign: |
−0.871−0.490i
|
Analytic conductor: |
1.95633 |
Root analytic conductor: |
1.39869 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3920(3599,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3920, ( :0), −0.871−0.490i)
|
Particular Values
L(21) |
≈ |
0.9518208629 |
L(21) |
≈ |
0.9518208629 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1+(−0.222+0.974i)T |
| 7 | 1+(−0.781−0.623i)T |
good | 3 | 1+(0.433−1.90i)T+(−0.900−0.433i)T2 |
| 11 | 1+(−0.623+0.781i)T2 |
| 13 | 1+(−0.623+0.781i)T2 |
| 17 | 1+(0.222−0.974i)T2 |
| 19 | 1−T2 |
| 23 | 1+(1.21−1.52i)T+(−0.222−0.974i)T2 |
| 29 | 1+(−0.777−0.974i)T+(−0.222+0.974i)T2 |
| 31 | 1−T2 |
| 37 | 1+(0.222−0.974i)T2 |
| 41 | 1+(0.400−1.75i)T+(−0.900−0.433i)T2 |
| 43 | 1+(−0.193−0.846i)T+(−0.900+0.433i)T2 |
| 47 | 1+(1.75−0.846i)T+(0.623−0.781i)T2 |
| 53 | 1+(0.222+0.974i)T2 |
| 59 | 1+(0.900−0.433i)T2 |
| 61 | 1+(−0.277−0.347i)T+(−0.222+0.974i)T2 |
| 67 | 1+T2 |
| 71 | 1+(0.222+0.974i)T2 |
| 73 | 1+(−0.623−0.781i)T2 |
| 79 | 1−T2 |
| 83 | 1+(−1.40−0.678i)T+(0.623+0.781i)T2 |
| 89 | 1+(1.12+0.541i)T+(0.623+0.781i)T2 |
| 97 | 1−T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.125812896460376698884526672810, −8.387059753036588457746030094404, −7.928754486611322472609497400042, −6.28952557321556496398115935224, −5.72801660239782599360397062101, −4.96891028025994132551851277111, −4.69272591980936374200739468752, −3.80085033021218206614568683505, −2.90173976585988230639534834357, −1.50240872484030482504091422657,
0.56026929182649568468690408122, 1.94034876758267210907675017420, 2.28418797343952218187227656148, 3.49532987844033660693507860589, 4.71682723768485562391969072537, 5.70686668149836832176437208069, 6.32340870942257183580325787031, 6.92069140761035104750066702667, 7.42870050454100778211000839817, 8.182029069633625406756150925212