Properties

Label 3920.1.di.a
Level 39203920
Weight 11
Character orbit 3920.di
Analytic conductor 1.9561.956
Analytic rank 00
Dimension 1212
Projective image D14D_{14}
CM discriminant -20
Inner twists 88

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3920,1,Mod(239,3920)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3920, base_ring=CyclotomicField(14))
 
chi = DirichletCharacter(H, H._module([7, 0, 7, 2]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3920.239");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: N N == 3920=24572 3920 = 2^{4} \cdot 5 \cdot 7^{2}
Weight: k k == 1 1
Character orbit: [χ][\chi] == 3920.di (of order 1414, degree 66, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 1.956334849521.95633484952
Analytic rank: 00
Dimension: 1212
Relative dimension: 22 over Q(ζ14)\Q(\zeta_{14})
Coefficient field: Q(ζ28)\Q(\zeta_{28})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x12x10+x8x6+x4x2+1 x^{12} - x^{10} + x^{8} - x^{6} + x^{4} - x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 1 1
Twist minimal: yes
Projective image: D14D_{14}
Projective field: Galois closure of Q[x]/(x14+)\mathbb{Q}[x]/(x^{14} + \cdots)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

The qq-expansion and trace form are shown below.

f(q)f(q) == q+(ζ2811ζ287)q3+ζ282q5+ζ2813q7+(ζ288+ζ2841)q9+(ζ2813ζ289)q15+(ζ2810+ζ286)q21++(ζ2812ζ2810)q89+O(q100) q + (\zeta_{28}^{11} - \zeta_{28}^{7}) q^{3} + \zeta_{28}^{2} q^{5} + \zeta_{28}^{13} q^{7} + ( - \zeta_{28}^{8} + \zeta_{28}^{4} - 1) q^{9} + (\zeta_{28}^{13} - \zeta_{28}^{9}) q^{15} + ( - \zeta_{28}^{10} + \zeta_{28}^{6}) q^{21}+ \cdots + (\zeta_{28}^{12} - \zeta_{28}^{10}) q^{89}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 12q+2q512q92q25+10q29+4q412q45+2q49+4q61+12q814q89+O(q100) 12 q + 2 q^{5} - 12 q^{9} - 2 q^{25} + 10 q^{29} + 4 q^{41} - 2 q^{45} + 2 q^{49} + 4 q^{61} + 12 q^{81} - 4 q^{89}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/3920Z)×\left(\mathbb{Z}/3920\mathbb{Z}\right)^\times.

nn 981981 14711471 30413041 31373137
χ(n)\chi(n) 11 1-1 ζ284\zeta_{28}^{4} 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
239.1
0.974928 + 0.222521i
−0.974928 0.222521i
−0.433884 0.900969i
0.433884 + 0.900969i
−0.433884 + 0.900969i
0.433884 0.900969i
0.974928 0.222521i
−0.974928 + 0.222521i
−0.781831 0.623490i
0.781831 + 0.623490i
−0.781831 + 0.623490i
0.781831 0.623490i
0 −0.781831 0.376510i 0 0.900969 + 0.433884i 0 −0.974928 + 0.222521i 0 −0.153989 0.193096i 0
239.2 0 0.781831 + 0.376510i 0 0.900969 + 0.433884i 0 0.974928 0.222521i 0 −0.153989 0.193096i 0
799.1 0 −0.974928 + 1.22252i 0 −0.623490 + 0.781831i 0 0.433884 0.900969i 0 −0.321552 1.40881i 0
799.2 0 0.974928 1.22252i 0 −0.623490 + 0.781831i 0 −0.433884 + 0.900969i 0 −0.321552 1.40881i 0
1359.1 0 −0.974928 1.22252i 0 −0.623490 0.781831i 0 0.433884 + 0.900969i 0 −0.321552 + 1.40881i 0
1359.2 0 0.974928 + 1.22252i 0 −0.623490 0.781831i 0 −0.433884 0.900969i 0 −0.321552 + 1.40881i 0
1919.1 0 −0.781831 + 0.376510i 0 0.900969 0.433884i 0 −0.974928 0.222521i 0 −0.153989 + 0.193096i 0
1919.2 0 0.781831 0.376510i 0 0.900969 0.433884i 0 0.974928 + 0.222521i 0 −0.153989 + 0.193096i 0
2479.1 0 −0.433884 1.90097i 0 0.222521 + 0.974928i 0 0.781831 0.623490i 0 −2.52446 + 1.21572i 0
2479.2 0 0.433884 + 1.90097i 0 0.222521 + 0.974928i 0 −0.781831 + 0.623490i 0 −2.52446 + 1.21572i 0
3599.1 0 −0.433884 + 1.90097i 0 0.222521 0.974928i 0 0.781831 + 0.623490i 0 −2.52446 1.21572i 0
3599.2 0 0.433884 1.90097i 0 0.222521 0.974928i 0 −0.781831 0.623490i 0 −2.52446 1.21572i 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 239.2
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
20.d odd 2 1 CM by Q(5)\Q(\sqrt{-5})
4.b odd 2 1 inner
5.b even 2 1 inner
49.e even 7 1 inner
196.k odd 14 1 inner
245.p even 14 1 inner
980.ba odd 14 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3920.1.di.a 12
4.b odd 2 1 inner 3920.1.di.a 12
5.b even 2 1 inner 3920.1.di.a 12
20.d odd 2 1 CM 3920.1.di.a 12
49.e even 7 1 inner 3920.1.di.a 12
196.k odd 14 1 inner 3920.1.di.a 12
245.p even 14 1 inner 3920.1.di.a 12
980.ba odd 14 1 inner 3920.1.di.a 12
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
3920.1.di.a 12 1.a even 1 1 trivial
3920.1.di.a 12 4.b odd 2 1 inner
3920.1.di.a 12 5.b even 2 1 inner
3920.1.di.a 12 20.d odd 2 1 CM
3920.1.di.a 12 49.e even 7 1 inner
3920.1.di.a 12 196.k odd 14 1 inner
3920.1.di.a 12 245.p even 14 1 inner
3920.1.di.a 12 980.ba odd 14 1 inner

Hecke kernels

This newform subspace is the entire newspace S1new(3920,[χ])S_{1}^{\mathrm{new}}(3920, [\chi]).

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T12 T^{12} Copy content Toggle raw display
33 T12+7T10++49 T^{12} + 7 T^{10} + \cdots + 49 Copy content Toggle raw display
55 (T6T5+T4++1)2 (T^{6} - T^{5} + T^{4} + \cdots + 1)^{2} Copy content Toggle raw display
77 T12T10++1 T^{12} - T^{10} + \cdots + 1 Copy content Toggle raw display
1111 T12 T^{12} Copy content Toggle raw display
1313 T12 T^{12} Copy content Toggle raw display
1717 T12 T^{12} Copy content Toggle raw display
1919 T12 T^{12} Copy content Toggle raw display
2323 T12+14T8++49 T^{12} + 14 T^{8} + \cdots + 49 Copy content Toggle raw display
2929 (T65T5+11T4++1)2 (T^{6} - 5 T^{5} + 11 T^{4} + \cdots + 1)^{2} Copy content Toggle raw display
3131 T12 T^{12} Copy content Toggle raw display
3737 T12 T^{12} Copy content Toggle raw display
4141 (T62T5+4T4++1)2 (T^{6} - 2 T^{5} + 4 T^{4} + \cdots + 1)^{2} Copy content Toggle raw display
4343 T12+14T8++49 T^{12} + 14 T^{8} + \cdots + 49 Copy content Toggle raw display
4747 T12+35T6++49 T^{12} + 35 T^{6} + \cdots + 49 Copy content Toggle raw display
5353 T12 T^{12} Copy content Toggle raw display
5959 T12 T^{12} Copy content Toggle raw display
6161 (T62T5+4T4++1)2 (T^{6} - 2 T^{5} + 4 T^{4} + \cdots + 1)^{2} Copy content Toggle raw display
6767 T12 T^{12} Copy content Toggle raw display
7171 T12 T^{12} Copy content Toggle raw display
7373 T12 T^{12} Copy content Toggle raw display
7979 T12 T^{12} Copy content Toggle raw display
8383 T12+14T8++49 T^{12} + 14 T^{8} + \cdots + 49 Copy content Toggle raw display
8989 (T6+2T5+4T4++1)2 (T^{6} + 2 T^{5} + 4 T^{4} + \cdots + 1)^{2} Copy content Toggle raw display
9797 T12 T^{12} Copy content Toggle raw display
show more
show less