Properties

Label 3920.1.di.a
Level $3920$
Weight $1$
Character orbit 3920.di
Analytic conductor $1.956$
Analytic rank $0$
Dimension $12$
Projective image $D_{14}$
CM discriminant -20
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3920,1,Mod(239,3920)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3920, base_ring=CyclotomicField(14))
 
chi = DirichletCharacter(H, H._module([7, 0, 7, 2]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3920.239");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3920 = 2^{4} \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 3920.di (of order \(14\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.95633484952\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(2\) over \(\Q(\zeta_{14})\)
Coefficient field: \(\Q(\zeta_{28})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - x^{10} + x^{8} - x^{6} + x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{14}\)
Projective field: Galois closure of \(\mathbb{Q}[x]/(x^{14} + \cdots)\)

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q + (\zeta_{28}^{11} - \zeta_{28}^{7}) q^{3} + \zeta_{28}^{2} q^{5} + \zeta_{28}^{13} q^{7} + ( - \zeta_{28}^{8} + \zeta_{28}^{4} - 1) q^{9} + (\zeta_{28}^{13} - \zeta_{28}^{9}) q^{15} + ( - \zeta_{28}^{10} + \zeta_{28}^{6}) q^{21}+ \cdots + (\zeta_{28}^{12} - \zeta_{28}^{10}) q^{89}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 2 q^{5} - 12 q^{9} - 2 q^{25} + 10 q^{29} + 4 q^{41} - 2 q^{45} + 2 q^{49} + 4 q^{61} + 12 q^{81} - 4 q^{89}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3920\mathbb{Z}\right)^\times\).

\(n\) \(981\) \(1471\) \(3041\) \(3137\)
\(\chi(n)\) \(1\) \(-1\) \(\zeta_{28}^{4}\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
239.1
0.974928 + 0.222521i
−0.974928 0.222521i
−0.433884 0.900969i
0.433884 + 0.900969i
−0.433884 + 0.900969i
0.433884 0.900969i
0.974928 0.222521i
−0.974928 + 0.222521i
−0.781831 0.623490i
0.781831 + 0.623490i
−0.781831 + 0.623490i
0.781831 0.623490i
0 −0.781831 0.376510i 0 0.900969 + 0.433884i 0 −0.974928 + 0.222521i 0 −0.153989 0.193096i 0
239.2 0 0.781831 + 0.376510i 0 0.900969 + 0.433884i 0 0.974928 0.222521i 0 −0.153989 0.193096i 0
799.1 0 −0.974928 + 1.22252i 0 −0.623490 + 0.781831i 0 0.433884 0.900969i 0 −0.321552 1.40881i 0
799.2 0 0.974928 1.22252i 0 −0.623490 + 0.781831i 0 −0.433884 + 0.900969i 0 −0.321552 1.40881i 0
1359.1 0 −0.974928 1.22252i 0 −0.623490 0.781831i 0 0.433884 + 0.900969i 0 −0.321552 + 1.40881i 0
1359.2 0 0.974928 + 1.22252i 0 −0.623490 0.781831i 0 −0.433884 0.900969i 0 −0.321552 + 1.40881i 0
1919.1 0 −0.781831 + 0.376510i 0 0.900969 0.433884i 0 −0.974928 0.222521i 0 −0.153989 + 0.193096i 0
1919.2 0 0.781831 0.376510i 0 0.900969 0.433884i 0 0.974928 + 0.222521i 0 −0.153989 + 0.193096i 0
2479.1 0 −0.433884 1.90097i 0 0.222521 + 0.974928i 0 0.781831 0.623490i 0 −2.52446 + 1.21572i 0
2479.2 0 0.433884 + 1.90097i 0 0.222521 + 0.974928i 0 −0.781831 + 0.623490i 0 −2.52446 + 1.21572i 0
3599.1 0 −0.433884 + 1.90097i 0 0.222521 0.974928i 0 0.781831 + 0.623490i 0 −2.52446 1.21572i 0
3599.2 0 0.433884 1.90097i 0 0.222521 0.974928i 0 −0.781831 0.623490i 0 −2.52446 1.21572i 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 239.2
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
20.d odd 2 1 CM by \(\Q(\sqrt{-5}) \)
4.b odd 2 1 inner
5.b even 2 1 inner
49.e even 7 1 inner
196.k odd 14 1 inner
245.p even 14 1 inner
980.ba odd 14 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3920.1.di.a 12
4.b odd 2 1 inner 3920.1.di.a 12
5.b even 2 1 inner 3920.1.di.a 12
20.d odd 2 1 CM 3920.1.di.a 12
49.e even 7 1 inner 3920.1.di.a 12
196.k odd 14 1 inner 3920.1.di.a 12
245.p even 14 1 inner 3920.1.di.a 12
980.ba odd 14 1 inner 3920.1.di.a 12
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
3920.1.di.a 12 1.a even 1 1 trivial
3920.1.di.a 12 4.b odd 2 1 inner
3920.1.di.a 12 5.b even 2 1 inner
3920.1.di.a 12 20.d odd 2 1 CM
3920.1.di.a 12 49.e even 7 1 inner
3920.1.di.a 12 196.k odd 14 1 inner
3920.1.di.a 12 245.p even 14 1 inner
3920.1.di.a 12 980.ba odd 14 1 inner

Hecke kernels

This newform subspace is the entire newspace \(S_{1}^{\mathrm{new}}(3920, [\chi])\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{12} \) Copy content Toggle raw display
$3$ \( T^{12} + 7 T^{10} + \cdots + 49 \) Copy content Toggle raw display
$5$ \( (T^{6} - T^{5} + T^{4} + \cdots + 1)^{2} \) Copy content Toggle raw display
$7$ \( T^{12} - T^{10} + \cdots + 1 \) Copy content Toggle raw display
$11$ \( T^{12} \) Copy content Toggle raw display
$13$ \( T^{12} \) Copy content Toggle raw display
$17$ \( T^{12} \) Copy content Toggle raw display
$19$ \( T^{12} \) Copy content Toggle raw display
$23$ \( T^{12} + 14 T^{8} + \cdots + 49 \) Copy content Toggle raw display
$29$ \( (T^{6} - 5 T^{5} + 11 T^{4} + \cdots + 1)^{2} \) Copy content Toggle raw display
$31$ \( T^{12} \) Copy content Toggle raw display
$37$ \( T^{12} \) Copy content Toggle raw display
$41$ \( (T^{6} - 2 T^{5} + 4 T^{4} + \cdots + 1)^{2} \) Copy content Toggle raw display
$43$ \( T^{12} + 14 T^{8} + \cdots + 49 \) Copy content Toggle raw display
$47$ \( T^{12} + 35 T^{6} + \cdots + 49 \) Copy content Toggle raw display
$53$ \( T^{12} \) Copy content Toggle raw display
$59$ \( T^{12} \) Copy content Toggle raw display
$61$ \( (T^{6} - 2 T^{5} + 4 T^{4} + \cdots + 1)^{2} \) Copy content Toggle raw display
$67$ \( T^{12} \) Copy content Toggle raw display
$71$ \( T^{12} \) Copy content Toggle raw display
$73$ \( T^{12} \) Copy content Toggle raw display
$79$ \( T^{12} \) Copy content Toggle raw display
$83$ \( T^{12} + 14 T^{8} + \cdots + 49 \) Copy content Toggle raw display
$89$ \( (T^{6} + 2 T^{5} + 4 T^{4} + \cdots + 1)^{2} \) Copy content Toggle raw display
$97$ \( T^{12} \) Copy content Toggle raw display
show more
show less