Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [3920,1,Mod(239,3920)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3920, base_ring=CyclotomicField(14))
chi = DirichletCharacter(H, H._module([7, 0, 7, 2]))
N = Newforms(chi, 1, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("3920.239");
S:= CuspForms(chi, 1);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 3920.di (of order , degree , minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Relative dimension: | over |
Coefficient field: | |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | yes |
Projective image: | |
Projective field: | Galois closure of |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
The -expansion and trace form are shown below.
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
239.1 |
|
0 | −0.781831 | − | 0.376510i | 0 | 0.900969 | + | 0.433884i | 0 | −0.974928 | + | 0.222521i | 0 | −0.153989 | − | 0.193096i | 0 | ||||||||||||||||||||||||||||||||||||||||||||||
239.2 | 0 | 0.781831 | + | 0.376510i | 0 | 0.900969 | + | 0.433884i | 0 | 0.974928 | − | 0.222521i | 0 | −0.153989 | − | 0.193096i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||
799.1 | 0 | −0.974928 | + | 1.22252i | 0 | −0.623490 | + | 0.781831i | 0 | 0.433884 | − | 0.900969i | 0 | −0.321552 | − | 1.40881i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||
799.2 | 0 | 0.974928 | − | 1.22252i | 0 | −0.623490 | + | 0.781831i | 0 | −0.433884 | + | 0.900969i | 0 | −0.321552 | − | 1.40881i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||
1359.1 | 0 | −0.974928 | − | 1.22252i | 0 | −0.623490 | − | 0.781831i | 0 | 0.433884 | + | 0.900969i | 0 | −0.321552 | + | 1.40881i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||
1359.2 | 0 | 0.974928 | + | 1.22252i | 0 | −0.623490 | − | 0.781831i | 0 | −0.433884 | − | 0.900969i | 0 | −0.321552 | + | 1.40881i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||
1919.1 | 0 | −0.781831 | + | 0.376510i | 0 | 0.900969 | − | 0.433884i | 0 | −0.974928 | − | 0.222521i | 0 | −0.153989 | + | 0.193096i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||
1919.2 | 0 | 0.781831 | − | 0.376510i | 0 | 0.900969 | − | 0.433884i | 0 | 0.974928 | + | 0.222521i | 0 | −0.153989 | + | 0.193096i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||
2479.1 | 0 | −0.433884 | − | 1.90097i | 0 | 0.222521 | + | 0.974928i | 0 | 0.781831 | − | 0.623490i | 0 | −2.52446 | + | 1.21572i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||
2479.2 | 0 | 0.433884 | + | 1.90097i | 0 | 0.222521 | + | 0.974928i | 0 | −0.781831 | + | 0.623490i | 0 | −2.52446 | + | 1.21572i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||
3599.1 | 0 | −0.433884 | + | 1.90097i | 0 | 0.222521 | − | 0.974928i | 0 | 0.781831 | + | 0.623490i | 0 | −2.52446 | − | 1.21572i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||
3599.2 | 0 | 0.433884 | − | 1.90097i | 0 | 0.222521 | − | 0.974928i | 0 | −0.781831 | − | 0.623490i | 0 | −2.52446 | − | 1.21572i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
20.d | odd | 2 | 1 | CM by |
4.b | odd | 2 | 1 | inner |
5.b | even | 2 | 1 | inner |
49.e | even | 7 | 1 | inner |
196.k | odd | 14 | 1 | inner |
245.p | even | 14 | 1 | inner |
980.ba | odd | 14 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 3920.1.di.a | ✓ | 12 |
4.b | odd | 2 | 1 | inner | 3920.1.di.a | ✓ | 12 |
5.b | even | 2 | 1 | inner | 3920.1.di.a | ✓ | 12 |
20.d | odd | 2 | 1 | CM | 3920.1.di.a | ✓ | 12 |
49.e | even | 7 | 1 | inner | 3920.1.di.a | ✓ | 12 |
196.k | odd | 14 | 1 | inner | 3920.1.di.a | ✓ | 12 |
245.p | even | 14 | 1 | inner | 3920.1.di.a | ✓ | 12 |
980.ba | odd | 14 | 1 | inner | 3920.1.di.a | ✓ | 12 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
3920.1.di.a | ✓ | 12 | 1.a | even | 1 | 1 | trivial |
3920.1.di.a | ✓ | 12 | 4.b | odd | 2 | 1 | inner |
3920.1.di.a | ✓ | 12 | 5.b | even | 2 | 1 | inner |
3920.1.di.a | ✓ | 12 | 20.d | odd | 2 | 1 | CM |
3920.1.di.a | ✓ | 12 | 49.e | even | 7 | 1 | inner |
3920.1.di.a | ✓ | 12 | 196.k | odd | 14 | 1 | inner |
3920.1.di.a | ✓ | 12 | 245.p | even | 14 | 1 | inner |
3920.1.di.a | ✓ | 12 | 980.ba | odd | 14 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace .