L(s) = 1 | + (−0.433 − 1.90i)3-s + (0.222 + 0.974i)5-s + (0.781 − 0.623i)7-s + (−2.52 + 1.21i)9-s + (1.75 − 0.846i)15-s + (−1.52 − 1.21i)21-s + (−1.21 − 1.52i)23-s + (−0.900 + 0.433i)25-s + (2.19 + 2.74i)27-s + (0.777 − 0.974i)29-s + (0.781 + 0.623i)35-s + (−0.400 − 1.75i)41-s + (0.193 − 0.846i)43-s + (−1.74 − 2.19i)45-s + (−1.75 − 0.846i)47-s + ⋯ |
L(s) = 1 | + (−0.433 − 1.90i)3-s + (0.222 + 0.974i)5-s + (0.781 − 0.623i)7-s + (−2.52 + 1.21i)9-s + (1.75 − 0.846i)15-s + (−1.52 − 1.21i)21-s + (−1.21 − 1.52i)23-s + (−0.900 + 0.433i)25-s + (2.19 + 2.74i)27-s + (0.777 − 0.974i)29-s + (0.781 + 0.623i)35-s + (−0.400 − 1.75i)41-s + (0.193 − 0.846i)43-s + (−1.74 − 2.19i)45-s + (−1.75 − 0.846i)47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3920 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.871 + 0.490i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3920 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.871 + 0.490i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.9518208629\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9518208629\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (-0.222 - 0.974i)T \) |
| 7 | \( 1 + (-0.781 + 0.623i)T \) |
good | 3 | \( 1 + (0.433 + 1.90i)T + (-0.900 + 0.433i)T^{2} \) |
| 11 | \( 1 + (-0.623 - 0.781i)T^{2} \) |
| 13 | \( 1 + (-0.623 - 0.781i)T^{2} \) |
| 17 | \( 1 + (0.222 + 0.974i)T^{2} \) |
| 19 | \( 1 - T^{2} \) |
| 23 | \( 1 + (1.21 + 1.52i)T + (-0.222 + 0.974i)T^{2} \) |
| 29 | \( 1 + (-0.777 + 0.974i)T + (-0.222 - 0.974i)T^{2} \) |
| 31 | \( 1 - T^{2} \) |
| 37 | \( 1 + (0.222 + 0.974i)T^{2} \) |
| 41 | \( 1 + (0.400 + 1.75i)T + (-0.900 + 0.433i)T^{2} \) |
| 43 | \( 1 + (-0.193 + 0.846i)T + (-0.900 - 0.433i)T^{2} \) |
| 47 | \( 1 + (1.75 + 0.846i)T + (0.623 + 0.781i)T^{2} \) |
| 53 | \( 1 + (0.222 - 0.974i)T^{2} \) |
| 59 | \( 1 + (0.900 + 0.433i)T^{2} \) |
| 61 | \( 1 + (-0.277 + 0.347i)T + (-0.222 - 0.974i)T^{2} \) |
| 67 | \( 1 + T^{2} \) |
| 71 | \( 1 + (0.222 - 0.974i)T^{2} \) |
| 73 | \( 1 + (-0.623 + 0.781i)T^{2} \) |
| 79 | \( 1 - T^{2} \) |
| 83 | \( 1 + (-1.40 + 0.678i)T + (0.623 - 0.781i)T^{2} \) |
| 89 | \( 1 + (1.12 - 0.541i)T + (0.623 - 0.781i)T^{2} \) |
| 97 | \( 1 - T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.182029069633625406756150925212, −7.42870050454100778211000839817, −6.92069140761035104750066702667, −6.32340870942257183580325787031, −5.70686668149836832176437208069, −4.71682723768485562391969072537, −3.49532987844033660693507860589, −2.28418797343952218187227656148, −1.94034876758267210907675017420, −0.56026929182649568468690408122,
1.50240872484030482504091422657, 2.90173976585988230639534834357, 3.80085033021218206614568683505, 4.69272591980936374200739468752, 4.96891028025994132551851277111, 5.72801660239782599360397062101, 6.28952557321556496398115935224, 7.928754486611322472609497400042, 8.387059753036588457746030094404, 9.125812896460376698884526672810