Properties

Label 2-3960-1.1-c1-0-14
Degree $2$
Conductor $3960$
Sign $1$
Analytic cond. $31.6207$
Root an. cond. $5.62323$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s + 1.41·7-s + 11-s − 0.585·13-s + 3.41·17-s − 5.65·19-s + 2.82·23-s + 25-s − 0.828·29-s + 6.48·31-s − 1.41·35-s − 7.65·37-s + 10.4·41-s + 2.58·43-s − 2.82·47-s − 5·49-s + 7.17·53-s − 55-s + 10.4·59-s − 3.17·61-s + 0.585·65-s − 8.48·67-s + 3.17·71-s + 7.41·73-s + 1.41·77-s + 1.65·79-s − 0.242·83-s + ⋯
L(s)  = 1  − 0.447·5-s + 0.534·7-s + 0.301·11-s − 0.162·13-s + 0.828·17-s − 1.29·19-s + 0.589·23-s + 0.200·25-s − 0.153·29-s + 1.16·31-s − 0.239·35-s − 1.25·37-s + 1.63·41-s + 0.394·43-s − 0.412·47-s − 0.714·49-s + 0.985·53-s − 0.134·55-s + 1.36·59-s − 0.406·61-s + 0.0726·65-s − 1.03·67-s + 0.376·71-s + 0.867·73-s + 0.161·77-s + 0.186·79-s − 0.0266·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3960 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3960 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3960\)    =    \(2^{3} \cdot 3^{2} \cdot 5 \cdot 11\)
Sign: $1$
Analytic conductor: \(31.6207\)
Root analytic conductor: \(5.62323\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 3960,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.832119334\)
\(L(\frac12)\) \(\approx\) \(1.832119334\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + T \)
11 \( 1 - T \)
good7 \( 1 - 1.41T + 7T^{2} \)
13 \( 1 + 0.585T + 13T^{2} \)
17 \( 1 - 3.41T + 17T^{2} \)
19 \( 1 + 5.65T + 19T^{2} \)
23 \( 1 - 2.82T + 23T^{2} \)
29 \( 1 + 0.828T + 29T^{2} \)
31 \( 1 - 6.48T + 31T^{2} \)
37 \( 1 + 7.65T + 37T^{2} \)
41 \( 1 - 10.4T + 41T^{2} \)
43 \( 1 - 2.58T + 43T^{2} \)
47 \( 1 + 2.82T + 47T^{2} \)
53 \( 1 - 7.17T + 53T^{2} \)
59 \( 1 - 10.4T + 59T^{2} \)
61 \( 1 + 3.17T + 61T^{2} \)
67 \( 1 + 8.48T + 67T^{2} \)
71 \( 1 - 3.17T + 71T^{2} \)
73 \( 1 - 7.41T + 73T^{2} \)
79 \( 1 - 1.65T + 79T^{2} \)
83 \( 1 + 0.242T + 83T^{2} \)
89 \( 1 - 4.34T + 89T^{2} \)
97 \( 1 - 0.828T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.410506837921309670529534113244, −7.79745959588708426682385365023, −7.04327952103669924828822244729, −6.30481694063817133506824655184, −5.42401850582041045434216929504, −4.61725189832187944956222852994, −3.94621828228751804059354460623, −2.98562958700781800534273445151, −1.95827998990836041620355231472, −0.790819635221559233414311353560, 0.790819635221559233414311353560, 1.95827998990836041620355231472, 2.98562958700781800534273445151, 3.94621828228751804059354460623, 4.61725189832187944956222852994, 5.42401850582041045434216929504, 6.30481694063817133506824655184, 7.04327952103669924828822244729, 7.79745959588708426682385365023, 8.410506837921309670529534113244

Graph of the $Z$-function along the critical line