L(s) = 1 | − 5-s + 1.41·7-s + 11-s − 0.585·13-s + 3.41·17-s − 5.65·19-s + 2.82·23-s + 25-s − 0.828·29-s + 6.48·31-s − 1.41·35-s − 7.65·37-s + 10.4·41-s + 2.58·43-s − 2.82·47-s − 5·49-s + 7.17·53-s − 55-s + 10.4·59-s − 3.17·61-s + 0.585·65-s − 8.48·67-s + 3.17·71-s + 7.41·73-s + 1.41·77-s + 1.65·79-s − 0.242·83-s + ⋯ |
L(s) = 1 | − 0.447·5-s + 0.534·7-s + 0.301·11-s − 0.162·13-s + 0.828·17-s − 1.29·19-s + 0.589·23-s + 0.200·25-s − 0.153·29-s + 1.16·31-s − 0.239·35-s − 1.25·37-s + 1.63·41-s + 0.394·43-s − 0.412·47-s − 0.714·49-s + 0.985·53-s − 0.134·55-s + 1.36·59-s − 0.406·61-s + 0.0726·65-s − 1.03·67-s + 0.376·71-s + 0.867·73-s + 0.161·77-s + 0.186·79-s − 0.0266·83-s + ⋯ |
Λ(s)=(=(3960s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(3960s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
1.832119334 |
L(21) |
≈ |
1.832119334 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 5 | 1+T |
| 11 | 1−T |
good | 7 | 1−1.41T+7T2 |
| 13 | 1+0.585T+13T2 |
| 17 | 1−3.41T+17T2 |
| 19 | 1+5.65T+19T2 |
| 23 | 1−2.82T+23T2 |
| 29 | 1+0.828T+29T2 |
| 31 | 1−6.48T+31T2 |
| 37 | 1+7.65T+37T2 |
| 41 | 1−10.4T+41T2 |
| 43 | 1−2.58T+43T2 |
| 47 | 1+2.82T+47T2 |
| 53 | 1−7.17T+53T2 |
| 59 | 1−10.4T+59T2 |
| 61 | 1+3.17T+61T2 |
| 67 | 1+8.48T+67T2 |
| 71 | 1−3.17T+71T2 |
| 73 | 1−7.41T+73T2 |
| 79 | 1−1.65T+79T2 |
| 83 | 1+0.242T+83T2 |
| 89 | 1−4.34T+89T2 |
| 97 | 1−0.828T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.410506837921309670529534113244, −7.79745959588708426682385365023, −7.04327952103669924828822244729, −6.30481694063817133506824655184, −5.42401850582041045434216929504, −4.61725189832187944956222852994, −3.94621828228751804059354460623, −2.98562958700781800534273445151, −1.95827998990836041620355231472, −0.790819635221559233414311353560,
0.790819635221559233414311353560, 1.95827998990836041620355231472, 2.98562958700781800534273445151, 3.94621828228751804059354460623, 4.61725189832187944956222852994, 5.42401850582041045434216929504, 6.30481694063817133506824655184, 7.04327952103669924828822244729, 7.79745959588708426682385365023, 8.410506837921309670529534113244