L(s) = 1 | + (0.809 + 0.587i)2-s + (0.309 + 0.951i)4-s + (0.587 + 0.809i)5-s + (0.863 − 0.280i)7-s + (−0.309 + 0.951i)8-s + i·10-s + (0.891 + 0.453i)11-s + (0.183 − 0.253i)13-s + (0.863 + 0.280i)14-s + (−0.809 + 0.587i)16-s + (−1.53 − 0.5i)19-s + (−0.587 + 0.809i)20-s + (0.453 + 0.891i)22-s + 0.618i·23-s + (−0.309 + 0.951i)25-s + (0.297 − 0.0966i)26-s + ⋯ |
L(s) = 1 | + (0.809 + 0.587i)2-s + (0.309 + 0.951i)4-s + (0.587 + 0.809i)5-s + (0.863 − 0.280i)7-s + (−0.309 + 0.951i)8-s + i·10-s + (0.891 + 0.453i)11-s + (0.183 − 0.253i)13-s + (0.863 + 0.280i)14-s + (−0.809 + 0.587i)16-s + (−1.53 − 0.5i)19-s + (−0.587 + 0.809i)20-s + (0.453 + 0.891i)22-s + 0.618i·23-s + (−0.309 + 0.951i)25-s + (0.297 − 0.0966i)26-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3960 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.100 - 0.994i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3960 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.100 - 0.994i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(2.549947174\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.549947174\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.809 - 0.587i)T \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (-0.587 - 0.809i)T \) |
| 11 | \( 1 + (-0.891 - 0.453i)T \) |
good | 7 | \( 1 + (-0.863 + 0.280i)T + (0.809 - 0.587i)T^{2} \) |
| 13 | \( 1 + (-0.183 + 0.253i)T + (-0.309 - 0.951i)T^{2} \) |
| 17 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 19 | \( 1 + (1.53 + 0.5i)T + (0.809 + 0.587i)T^{2} \) |
| 23 | \( 1 - 0.618iT - T^{2} \) |
| 29 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 31 | \( 1 + (-0.309 - 0.951i)T^{2} \) |
| 37 | \( 1 + (0.610 + 1.87i)T + (-0.809 + 0.587i)T^{2} \) |
| 41 | \( 1 + (-0.550 + 1.69i)T + (-0.809 - 0.587i)T^{2} \) |
| 43 | \( 1 + T^{2} \) |
| 47 | \( 1 + (-1.11 - 0.363i)T + (0.809 + 0.587i)T^{2} \) |
| 53 | \( 1 + (-1.11 + 1.53i)T + (-0.309 - 0.951i)T^{2} \) |
| 59 | \( 1 + (1.87 - 0.610i)T + (0.809 - 0.587i)T^{2} \) |
| 61 | \( 1 + (0.309 - 0.951i)T^{2} \) |
| 67 | \( 1 - T^{2} \) |
| 71 | \( 1 + (0.309 - 0.951i)T^{2} \) |
| 73 | \( 1 + (-0.809 + 0.587i)T^{2} \) |
| 79 | \( 1 + (0.309 + 0.951i)T^{2} \) |
| 83 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 89 | \( 1 - 1.78iT - T^{2} \) |
| 97 | \( 1 + (-0.309 - 0.951i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.807491915289552295751793732338, −7.80423286775865219379145352274, −7.20234975922461442892803099946, −6.63827944296305866774618333215, −5.86833861869070588207112553280, −5.21486978240397544556660254663, −4.19599327187273566205726400798, −3.74038719501035370597211107948, −2.49039967657479490079090363752, −1.81178189391380518146111949468,
1.23222330980376701035337475041, 1.86257115170188356903929411334, 2.86937168367930113431151286147, 4.10856430617119427960983217967, 4.53631344044277202169194485122, 5.29776675753219828136171680578, 6.26481422649787733583005571691, 6.41570047444532325059317283578, 7.83514323841735608122372581779, 8.719694840354338502979960181854