L(s) = 1 | + (0.809 + 0.587i)2-s + (0.309 + 0.951i)4-s + (0.587 + 0.809i)5-s + (0.863 − 0.280i)7-s + (−0.309 + 0.951i)8-s + i·10-s + (0.891 + 0.453i)11-s + (0.183 − 0.253i)13-s + (0.863 + 0.280i)14-s + (−0.809 + 0.587i)16-s + (−1.53 − 0.5i)19-s + (−0.587 + 0.809i)20-s + (0.453 + 0.891i)22-s + 0.618i·23-s + (−0.309 + 0.951i)25-s + (0.297 − 0.0966i)26-s + ⋯ |
L(s) = 1 | + (0.809 + 0.587i)2-s + (0.309 + 0.951i)4-s + (0.587 + 0.809i)5-s + (0.863 − 0.280i)7-s + (−0.309 + 0.951i)8-s + i·10-s + (0.891 + 0.453i)11-s + (0.183 − 0.253i)13-s + (0.863 + 0.280i)14-s + (−0.809 + 0.587i)16-s + (−1.53 − 0.5i)19-s + (−0.587 + 0.809i)20-s + (0.453 + 0.891i)22-s + 0.618i·23-s + (−0.309 + 0.951i)25-s + (0.297 − 0.0966i)26-s + ⋯ |
Λ(s)=(=(3960s/2ΓC(s)L(s)(−0.100−0.994i)Λ(1−s)
Λ(s)=(=(3960s/2ΓC(s)L(s)(−0.100−0.994i)Λ(1−s)
Degree: |
2 |
Conductor: |
3960
= 23⋅32⋅5⋅11
|
Sign: |
−0.100−0.994i
|
Analytic conductor: |
1.97629 |
Root analytic conductor: |
1.40580 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3960(2339,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3960, ( :0), −0.100−0.994i)
|
Particular Values
L(21) |
≈ |
2.549947174 |
L(21) |
≈ |
2.549947174 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.809−0.587i)T |
| 3 | 1 |
| 5 | 1+(−0.587−0.809i)T |
| 11 | 1+(−0.891−0.453i)T |
good | 7 | 1+(−0.863+0.280i)T+(0.809−0.587i)T2 |
| 13 | 1+(−0.183+0.253i)T+(−0.309−0.951i)T2 |
| 17 | 1+(−0.309+0.951i)T2 |
| 19 | 1+(1.53+0.5i)T+(0.809+0.587i)T2 |
| 23 | 1−0.618iT−T2 |
| 29 | 1+(0.809−0.587i)T2 |
| 31 | 1+(−0.309−0.951i)T2 |
| 37 | 1+(0.610+1.87i)T+(−0.809+0.587i)T2 |
| 41 | 1+(−0.550+1.69i)T+(−0.809−0.587i)T2 |
| 43 | 1+T2 |
| 47 | 1+(−1.11−0.363i)T+(0.809+0.587i)T2 |
| 53 | 1+(−1.11+1.53i)T+(−0.309−0.951i)T2 |
| 59 | 1+(1.87−0.610i)T+(0.809−0.587i)T2 |
| 61 | 1+(0.309−0.951i)T2 |
| 67 | 1−T2 |
| 71 | 1+(0.309−0.951i)T2 |
| 73 | 1+(−0.809+0.587i)T2 |
| 79 | 1+(0.309+0.951i)T2 |
| 83 | 1+(−0.309+0.951i)T2 |
| 89 | 1−1.78iT−T2 |
| 97 | 1+(−0.309−0.951i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.807491915289552295751793732338, −7.80423286775865219379145352274, −7.20234975922461442892803099946, −6.63827944296305866774618333215, −5.86833861869070588207112553280, −5.21486978240397544556660254663, −4.19599327187273566205726400798, −3.74038719501035370597211107948, −2.49039967657479490079090363752, −1.81178189391380518146111949468,
1.23222330980376701035337475041, 1.86257115170188356903929411334, 2.86937168367930113431151286147, 4.10856430617119427960983217967, 4.53631344044277202169194485122, 5.29776675753219828136171680578, 6.26481422649787733583005571691, 6.41570047444532325059317283578, 7.83514323841735608122372581779, 8.719694840354338502979960181854