L(s) = 1 | + (0.923 + 0.382i)2-s + (0.707 + 0.707i)4-s − 5-s − 1.84i·7-s + (0.382 + 0.923i)8-s + (−0.923 − 0.382i)10-s + i·11-s − 0.765i·13-s + (0.707 − 1.70i)14-s + i·16-s − 1.84i·17-s + (−0.707 − 0.707i)20-s + (−0.382 + 0.923i)22-s + 25-s + (0.292 − 0.707i)26-s + ⋯ |
L(s) = 1 | + (0.923 + 0.382i)2-s + (0.707 + 0.707i)4-s − 5-s − 1.84i·7-s + (0.382 + 0.923i)8-s + (−0.923 − 0.382i)10-s + i·11-s − 0.765i·13-s + (0.707 − 1.70i)14-s + i·16-s − 1.84i·17-s + (−0.707 − 0.707i)20-s + (−0.382 + 0.923i)22-s + 25-s + (0.292 − 0.707i)26-s + ⋯ |
Λ(s)=(=(3960s/2ΓC(s)L(s)(0.845+0.533i)Λ(1−s)
Λ(s)=(=(3960s/2ΓC(s)L(s)(0.845+0.533i)Λ(1−s)
Degree: |
2 |
Conductor: |
3960
= 23⋅32⋅5⋅11
|
Sign: |
0.845+0.533i
|
Analytic conductor: |
1.97629 |
Root analytic conductor: |
1.40580 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3960(1979,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3960, ( :0), 0.845+0.533i)
|
Particular Values
L(21) |
≈ |
1.839682326 |
L(21) |
≈ |
1.839682326 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.923−0.382i)T |
| 3 | 1 |
| 5 | 1+T |
| 11 | 1−iT |
good | 7 | 1+1.84iT−T2 |
| 13 | 1+0.765iT−T2 |
| 17 | 1+1.84iT−T2 |
| 19 | 1−T2 |
| 23 | 1−T2 |
| 29 | 1−T2 |
| 31 | 1+1.41iT−T2 |
| 37 | 1+T2 |
| 41 | 1+T2 |
| 43 | 1−1.84T+T2 |
| 47 | 1−T2 |
| 53 | 1−T2 |
| 59 | 1+1.41iT−T2 |
| 61 | 1+T2 |
| 67 | 1−T2 |
| 71 | 1−1.41T+T2 |
| 73 | 1+0.765T+T2 |
| 79 | 1+T2 |
| 83 | 1−0.765iT−T2 |
| 89 | 1−2iT−T2 |
| 97 | 1−T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.970040048872992545297260953376, −7.69771716700147128206404912947, −7.12839350234580140368931098813, −6.63347789635341590365165903140, −5.36137014831954117511195953272, −4.61507421280942553760464819622, −4.13535180987609702278457395751, −3.41580680596221167512385927598, −2.47155267645868571596373524698, −0.78830010746630318381565432904,
1.50373093101132212485002946156, 2.53370050212074824476007081608, 3.30978309763761941757398367279, 4.04789876546875778193022633948, 4.89257260678206837159340069290, 5.81387920219256326230450732216, 6.13524658515420667460840370069, 7.05572809999574825003584363120, 8.098923719770247606101203761315, 8.712823327739130949727053216259