L(s) = 1 | + (0.676 − 1.17i)2-s + (−0.5 − 0.866i)3-s + (0.0838 + 0.145i)4-s + (0.583 − 1.01i)5-s − 1.35·6-s + (1.40 + 2.24i)7-s + 2.93·8-s + (−0.499 + 0.866i)9-s + (−0.790 − 1.36i)10-s + (−3.00 − 5.20i)11-s + (0.0838 − 0.145i)12-s + 6.00·13-s + (3.57 − 0.132i)14-s − 1.16·15-s + (1.81 − 3.14i)16-s + (−1.5 − 2.59i)17-s + ⋯ |
L(s) = 1 | + (0.478 − 0.828i)2-s + (−0.288 − 0.499i)3-s + (0.0419 + 0.0725i)4-s + (0.261 − 0.452i)5-s − 0.552·6-s + (0.531 + 0.846i)7-s + 1.03·8-s + (−0.166 + 0.288i)9-s + (−0.249 − 0.432i)10-s + (−0.905 − 1.56i)11-s + (0.0241 − 0.0419i)12-s + 1.66·13-s + (0.956 − 0.0355i)14-s − 0.301·15-s + (0.454 − 0.787i)16-s + (−0.363 − 0.630i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 399 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.100 + 0.994i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 399 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.100 + 0.994i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.41416 - 1.27875i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.41416 - 1.27875i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (0.5 + 0.866i)T \) |
| 7 | \( 1 + (-1.40 - 2.24i)T \) |
| 19 | \( 1 + (-0.5 + 0.866i)T \) |
good | 2 | \( 1 + (-0.676 + 1.17i)T + (-1 - 1.73i)T^{2} \) |
| 5 | \( 1 + (-0.583 + 1.01i)T + (-2.5 - 4.33i)T^{2} \) |
| 11 | \( 1 + (3.00 + 5.20i)T + (-5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 - 6.00T + 13T^{2} \) |
| 17 | \( 1 + (1.5 + 2.59i)T + (-8.5 + 14.7i)T^{2} \) |
| 23 | \( 1 + (3.24 - 5.61i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + 6.13T + 29T^{2} \) |
| 31 | \( 1 + (3.73 + 6.47i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (1.82 - 3.15i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 - 4.77T + 41T^{2} \) |
| 43 | \( 1 + 0.507T + 43T^{2} \) |
| 47 | \( 1 + (-2.68 + 4.64i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (-3.65 - 6.32i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (-4.44 - 7.69i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (0.670 - 1.16i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-2.18 - 3.78i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + 9.92T + 71T^{2} \) |
| 73 | \( 1 + (1.94 + 3.36i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (5.34 - 9.25i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + 3.07T + 83T^{2} \) |
| 89 | \( 1 + (4.52 - 7.84i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + 1.01T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.35952779457341562436656901196, −10.70216759495511674388134809487, −9.129085213959679608489678914731, −8.343549499600599147441256650883, −7.47288209199241874365150535971, −5.83195245891497576381909975016, −5.40746633629249302237102942028, −3.83024396406843420419434859585, −2.66646155700072771625035334541, −1.37845946394378411367482400541,
1.84755085270919642383975048142, 3.93731559895141115478543231516, 4.71756908049138851120169371514, 5.77966728844986376465364917432, 6.67419952732410032522352563343, 7.48949172030391331250162572302, 8.514649475607647953949101341148, 10.04836624544270733273147257636, 10.59563955945154794593670533975, 11.07650188316144119457050417513