L(s) = 1 | + (0.676 − 1.17i)2-s + (−0.5 − 0.866i)3-s + (0.0838 + 0.145i)4-s + (0.583 − 1.01i)5-s − 1.35·6-s + (1.40 + 2.24i)7-s + 2.93·8-s + (−0.499 + 0.866i)9-s + (−0.790 − 1.36i)10-s + (−3.00 − 5.20i)11-s + (0.0838 − 0.145i)12-s + 6.00·13-s + (3.57 − 0.132i)14-s − 1.16·15-s + (1.81 − 3.14i)16-s + (−1.5 − 2.59i)17-s + ⋯ |
L(s) = 1 | + (0.478 − 0.828i)2-s + (−0.288 − 0.499i)3-s + (0.0419 + 0.0725i)4-s + (0.261 − 0.452i)5-s − 0.552·6-s + (0.531 + 0.846i)7-s + 1.03·8-s + (−0.166 + 0.288i)9-s + (−0.249 − 0.432i)10-s + (−0.905 − 1.56i)11-s + (0.0241 − 0.0419i)12-s + 1.66·13-s + (0.956 − 0.0355i)14-s − 0.301·15-s + (0.454 − 0.787i)16-s + (−0.363 − 0.630i)17-s + ⋯ |
Λ(s)=(=(399s/2ΓC(s)L(s)(0.100+0.994i)Λ(2−s)
Λ(s)=(=(399s/2ΓC(s+1/2)L(s)(0.100+0.994i)Λ(1−s)
Degree: |
2 |
Conductor: |
399
= 3⋅7⋅19
|
Sign: |
0.100+0.994i
|
Analytic conductor: |
3.18603 |
Root analytic conductor: |
1.78494 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ399(58,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 399, ( :1/2), 0.100+0.994i)
|
Particular Values
L(1) |
≈ |
1.41416−1.27875i |
L(21) |
≈ |
1.41416−1.27875i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(0.5+0.866i)T |
| 7 | 1+(−1.40−2.24i)T |
| 19 | 1+(−0.5+0.866i)T |
good | 2 | 1+(−0.676+1.17i)T+(−1−1.73i)T2 |
| 5 | 1+(−0.583+1.01i)T+(−2.5−4.33i)T2 |
| 11 | 1+(3.00+5.20i)T+(−5.5+9.52i)T2 |
| 13 | 1−6.00T+13T2 |
| 17 | 1+(1.5+2.59i)T+(−8.5+14.7i)T2 |
| 23 | 1+(3.24−5.61i)T+(−11.5−19.9i)T2 |
| 29 | 1+6.13T+29T2 |
| 31 | 1+(3.73+6.47i)T+(−15.5+26.8i)T2 |
| 37 | 1+(1.82−3.15i)T+(−18.5−32.0i)T2 |
| 41 | 1−4.77T+41T2 |
| 43 | 1+0.507T+43T2 |
| 47 | 1+(−2.68+4.64i)T+(−23.5−40.7i)T2 |
| 53 | 1+(−3.65−6.32i)T+(−26.5+45.8i)T2 |
| 59 | 1+(−4.44−7.69i)T+(−29.5+51.0i)T2 |
| 61 | 1+(0.670−1.16i)T+(−30.5−52.8i)T2 |
| 67 | 1+(−2.18−3.78i)T+(−33.5+58.0i)T2 |
| 71 | 1+9.92T+71T2 |
| 73 | 1+(1.94+3.36i)T+(−36.5+63.2i)T2 |
| 79 | 1+(5.34−9.25i)T+(−39.5−68.4i)T2 |
| 83 | 1+3.07T+83T2 |
| 89 | 1+(4.52−7.84i)T+(−44.5−77.0i)T2 |
| 97 | 1+1.01T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.35952779457341562436656901196, −10.70216759495511674388134809487, −9.129085213959679608489678914731, −8.343549499600599147441256650883, −7.47288209199241874365150535971, −5.83195245891497576381909975016, −5.40746633629249302237102942028, −3.83024396406843420419434859585, −2.66646155700072771625035334541, −1.37845946394378411367482400541,
1.84755085270919642383975048142, 3.93731559895141115478543231516, 4.71756908049138851120169371514, 5.77966728844986376465364917432, 6.67419952732410032522352563343, 7.48949172030391331250162572302, 8.514649475607647953949101341148, 10.04836624544270733273147257636, 10.59563955945154794593670533975, 11.07650188316144119457050417513