L(s) = 1 | + (−2.38 + 1.19i)2-s + (1.71 + 0.238i)3-s + (3.06 − 4.11i)4-s + (0.727 − 2.42i)5-s + (−4.37 + 1.48i)6-s + (0.202 − 0.469i)7-s + (−1.44 + 8.22i)8-s + (2.88 + 0.817i)9-s + (1.17 + 6.66i)10-s + (1.49 + 0.354i)11-s + (6.23 − 6.32i)12-s + (−4.71 + 3.09i)13-s + (0.0793 + 1.36i)14-s + (1.82 − 3.99i)15-s + (−3.45 − 11.5i)16-s + (−1.33 − 0.484i)17-s + ⋯ |
L(s) = 1 | + (−1.68 + 0.847i)2-s + (0.990 + 0.137i)3-s + (1.53 − 2.05i)4-s + (0.325 − 1.08i)5-s + (−1.78 + 0.607i)6-s + (0.0764 − 0.177i)7-s + (−0.512 + 2.90i)8-s + (0.962 + 0.272i)9-s + (0.371 + 2.10i)10-s + (0.450 + 0.106i)11-s + (1.79 − 1.82i)12-s + (−1.30 + 0.859i)13-s + (0.0211 + 0.363i)14-s + (0.471 − 1.03i)15-s + (−0.862 − 2.88i)16-s + (−0.322 − 0.117i)17-s + ⋯ |
Λ(s)=(=(81s/2ΓC(s)L(s)(0.913−0.405i)Λ(2−s)
Λ(s)=(=(81s/2ΓC(s+1/2)L(s)(0.913−0.405i)Λ(1−s)
Degree: |
2 |
Conductor: |
81
= 34
|
Sign: |
0.913−0.405i
|
Analytic conductor: |
0.646788 |
Root analytic conductor: |
0.804231 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ81(25,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 81, ( :1/2), 0.913−0.405i)
|
Particular Values
L(1) |
≈ |
0.635427+0.134736i |
L(21) |
≈ |
0.635427+0.134736i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(−1.71−0.238i)T |
good | 2 | 1+(2.38−1.19i)T+(1.19−1.60i)T2 |
| 5 | 1+(−0.727+2.42i)T+(−4.17−2.74i)T2 |
| 7 | 1+(−0.202+0.469i)T+(−4.80−5.09i)T2 |
| 11 | 1+(−1.49−0.354i)T+(9.82+4.93i)T2 |
| 13 | 1+(4.71−3.09i)T+(5.14−11.9i)T2 |
| 17 | 1+(1.33+0.484i)T+(13.0+10.9i)T2 |
| 19 | 1+(−0.986+0.359i)T+(14.5−12.2i)T2 |
| 23 | 1+(−0.103−0.239i)T+(−15.7+16.7i)T2 |
| 29 | 1+(0.103−1.77i)T+(−28.8−3.36i)T2 |
| 31 | 1+(5.13+0.599i)T+(30.1+7.14i)T2 |
| 37 | 1+(5.04−4.23i)T+(6.42−36.4i)T2 |
| 41 | 1+(6.03+3.03i)T+(24.4+32.8i)T2 |
| 43 | 1+(−4.19+4.44i)T+(−2.50−42.9i)T2 |
| 47 | 1+(7.26−0.848i)T+(45.7−10.8i)T2 |
| 53 | 1+(−4.74−8.21i)T+(−26.5+45.8i)T2 |
| 59 | 1+(4.82−1.14i)T+(52.7−26.4i)T2 |
| 61 | 1+(7.70+10.3i)T+(−17.4+58.4i)T2 |
| 67 | 1+(0.373+6.40i)T+(−66.5+7.77i)T2 |
| 71 | 1+(0.896+5.08i)T+(−66.7+24.2i)T2 |
| 73 | 1+(1.03−5.87i)T+(−68.5−24.9i)T2 |
| 79 | 1+(−8.88+4.46i)T+(47.1−63.3i)T2 |
| 83 | 1+(−11.5+5.81i)T+(49.5−66.5i)T2 |
| 89 | 1+(1.71−9.71i)T+(−83.6−30.4i)T2 |
| 97 | 1+(−1.03−3.44i)T+(−81.0+53.3i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−14.75741118556724189615965075556, −13.80364620890676650629480692807, −12.17489699228281643123589045754, −10.49517277142775370025351514899, −9.213650461005199371679324396116, −9.158984850424488719297315832303, −7.80711125731332191315600769670, −6.84795445479317731198182949351, −4.94988147862899352730689825929, −1.78469531244498435919842016086,
2.19511514743989928642532476910, 3.27278229191209588631189980987, 6.87117131731274078451387433775, 7.71204132256759362126205523326, 8.873487758739507447784824122875, 9.875789373439421969078153618594, 10.54416872078330315062874548976, 11.83453856866474517104425680103, 12.93474703720603036537414548147, 14.45824782597288216743762711666