L(s) = 1 | + (−2.25 − 0.821i)2-s + (2.88 + 2.42i)4-s + (−0.0161 + 0.0916i)5-s + (−0.444 + 0.372i)7-s + (−2.12 − 3.67i)8-s + (0.111 − 0.193i)10-s + (0.537 + 3.04i)11-s + (−3.94 + 1.43i)13-s + (1.30 − 0.476i)14-s + (0.462 + 2.62i)16-s + (−0.995 + 1.72i)17-s + (1.92 + 3.33i)19-s + (−0.268 + 0.225i)20-s + (1.28 − 7.31i)22-s + (3.41 + 2.86i)23-s + ⋯ |
L(s) = 1 | + (−1.59 − 0.580i)2-s + (1.44 + 1.21i)4-s + (−0.00722 + 0.0409i)5-s + (−0.167 + 0.140i)7-s + (−0.750 − 1.29i)8-s + (0.0353 − 0.0612i)10-s + (0.161 + 0.918i)11-s + (−1.09 + 0.398i)13-s + (0.349 − 0.127i)14-s + (0.115 + 0.655i)16-s + (−0.241 + 0.418i)17-s + (0.441 + 0.764i)19-s + (−0.0600 + 0.0504i)20-s + (0.275 − 1.55i)22-s + (0.711 + 0.596i)23-s + ⋯ |
Λ(s)=(=(243s/2ΓC(s)L(s)(0.690−0.723i)Λ(2−s)
Λ(s)=(=(243s/2ΓC(s+1/2)L(s)(0.690−0.723i)Λ(1−s)
Degree: |
2 |
Conductor: |
243
= 35
|
Sign: |
0.690−0.723i
|
Analytic conductor: |
1.94036 |
Root analytic conductor: |
1.39296 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ243(190,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 243, ( :1/2), 0.690−0.723i)
|
Particular Values
L(1) |
≈ |
0.443536+0.189949i |
L(21) |
≈ |
0.443536+0.189949i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
good | 2 | 1+(2.25+0.821i)T+(1.53+1.28i)T2 |
| 5 | 1+(0.0161−0.0916i)T+(−4.69−1.71i)T2 |
| 7 | 1+(0.444−0.372i)T+(1.21−6.89i)T2 |
| 11 | 1+(−0.537−3.04i)T+(−10.3+3.76i)T2 |
| 13 | 1+(3.94−1.43i)T+(9.95−8.35i)T2 |
| 17 | 1+(0.995−1.72i)T+(−8.5−14.7i)T2 |
| 19 | 1+(−1.92−3.33i)T+(−9.5+16.4i)T2 |
| 23 | 1+(−3.41−2.86i)T+(3.99+22.6i)T2 |
| 29 | 1+(−6.01−2.18i)T+(22.2+18.6i)T2 |
| 31 | 1+(−1.26−1.06i)T+(5.38+30.5i)T2 |
| 37 | 1+(2.01−3.49i)T+(−18.5−32.0i)T2 |
| 41 | 1+(1.03−0.374i)T+(31.4−26.3i)T2 |
| 43 | 1+(1.19+6.79i)T+(−40.4+14.7i)T2 |
| 47 | 1+(2.75−2.30i)T+(8.16−46.2i)T2 |
| 53 | 1+5.40T+53T2 |
| 59 | 1+(−1.78+10.1i)T+(−55.4−20.1i)T2 |
| 61 | 1+(10.1−8.48i)T+(10.5−60.0i)T2 |
| 67 | 1+(−8.30+3.02i)T+(51.3−43.0i)T2 |
| 71 | 1+(−0.572+0.991i)T+(−35.5−61.4i)T2 |
| 73 | 1+(0.0977+0.169i)T+(−36.5+63.2i)T2 |
| 79 | 1+(−6.77−2.46i)T+(60.5+50.7i)T2 |
| 83 | 1+(14.0+5.09i)T+(63.5+53.3i)T2 |
| 89 | 1+(0.776+1.34i)T+(−44.5+77.0i)T2 |
| 97 | 1+(−0.919−5.21i)T+(−91.1+33.1i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.06828444974761772568095486327, −11.02655878978542289738971945271, −10.08578444066471908712075763994, −9.492762677903980064171253932213, −8.568445248080881548065742539771, −7.49179258777373113565046847428, −6.72938766435507366126183420782, −4.87111144662319341533896607654, −3.01111536636660680953856431517, −1.62850608450043783256394884498,
0.66830618715030517674368594508, 2.77297374496445432863010632444, 4.94339336540978008625501247509, 6.38689059319190092766324190923, 7.15963846597781706516698739374, 8.196435808748084010364826132712, 8.989681946243214373687135142423, 9.860248757774946959917547785024, 10.70631629793351394543494549923, 11.59238382681422858672527114031