Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [243,2,Mod(28,243)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(243, base_ring=CyclotomicField(18))
chi = DirichletCharacter(H, H._module([8]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("243.28");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 243.e (of order , degree , not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Relative dimension: | over |
Coefficient field: | 12.0.1952986685049.1 |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | no (minimal twist has level 27) |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a basis for the coefficient ring described below. We also show the integral -expansion of the trace form.
Basis of coefficient ring in terms of a root of
:
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
28.1 |
|
0.0721450 | + | 0.409154i | 0 | 1.71718 | − | 0.625003i | −1.69693 | − | 1.42389i | 0 | 1.24005 | + | 0.451340i | 0.795075 | + | 1.37711i | 0 | 0.460168 | − | 0.797034i | ||||||||||||||||||||||||||||||||||||||||||
28.2 | 0.367548 | + | 2.08447i | 0 | −2.33052 | + | 0.848241i | 2.05537 | + | 1.72466i | 0 | −0.913694 | − | 0.332557i | −0.508086 | − | 0.880031i | 0 | −2.83955 | + | 4.91825i | |||||||||||||||||||||||||||||||||||||||||||
55.1 | −2.25679 | + | 0.821403i | 0 | 2.88629 | − | 2.42189i | −0.0161638 | − | 0.0916693i | 0 | −0.444200 | − | 0.372728i | −2.12277 | + | 3.67675i | 0 | 0.111776 | + | 0.193601i | |||||||||||||||||||||||||||||||||||||||||||
55.2 | 0.990741 | − | 0.360600i | 0 | −0.680553 | + | 0.571052i | 0.303153 | + | 1.71926i | 0 | 1.88389 | + | 1.58077i | −1.52266 | + | 2.63732i | 0 | 0.920313 | + | 1.59403i | |||||||||||||||||||||||||||||||||||||||||||
109.1 | −1.28765 | + | 1.08047i | 0 | 0.143341 | − | 0.812925i | −1.06142 | + | 0.386327i | 0 | −0.678777 | − | 3.84954i | −0.987144 | − | 1.70978i | 0 | 0.949332 | − | 1.64429i | |||||||||||||||||||||||||||||||||||||||||||
109.2 | 0.614005 | − | 0.515212i | 0 | −0.235737 | + | 1.33693i | −2.58401 | + | 0.940501i | 0 | 0.412733 | + | 2.34072i | 1.34559 | + | 2.33062i | 0 | −1.10204 | + | 1.90878i | |||||||||||||||||||||||||||||||||||||||||||
136.1 | −1.28765 | − | 1.08047i | 0 | 0.143341 | + | 0.812925i | −1.06142 | − | 0.386327i | 0 | −0.678777 | + | 3.84954i | −0.987144 | + | 1.70978i | 0 | 0.949332 | + | 1.64429i | |||||||||||||||||||||||||||||||||||||||||||
136.2 | 0.614005 | + | 0.515212i | 0 | −0.235737 | − | 1.33693i | −2.58401 | − | 0.940501i | 0 | 0.412733 | − | 2.34072i | 1.34559 | − | 2.33062i | 0 | −1.10204 | − | 1.90878i | |||||||||||||||||||||||||||||||||||||||||||
190.1 | −2.25679 | − | 0.821403i | 0 | 2.88629 | + | 2.42189i | −0.0161638 | + | 0.0916693i | 0 | −0.444200 | + | 0.372728i | −2.12277 | − | 3.67675i | 0 | 0.111776 | − | 0.193601i | |||||||||||||||||||||||||||||||||||||||||||
190.2 | 0.990741 | + | 0.360600i | 0 | −0.680553 | − | 0.571052i | 0.303153 | − | 1.71926i | 0 | 1.88389 | − | 1.58077i | −1.52266 | − | 2.63732i | 0 | 0.920313 | − | 1.59403i | |||||||||||||||||||||||||||||||||||||||||||
217.1 | 0.0721450 | − | 0.409154i | 0 | 1.71718 | + | 0.625003i | −1.69693 | + | 1.42389i | 0 | 1.24005 | − | 0.451340i | 0.795075 | − | 1.37711i | 0 | 0.460168 | + | 0.797034i | |||||||||||||||||||||||||||||||||||||||||||
217.2 | 0.367548 | − | 2.08447i | 0 | −2.33052 | − | 0.848241i | 2.05537 | − | 1.72466i | 0 | −0.913694 | + | 0.332557i | −0.508086 | + | 0.880031i | 0 | −2.83955 | − | 4.91825i | |||||||||||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
27.e | even | 9 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 243.2.e.a | 12 | |
3.b | odd | 2 | 1 | 243.2.e.d | 12 | ||
9.c | even | 3 | 1 | 81.2.e.a | 12 | ||
9.c | even | 3 | 1 | 243.2.e.b | 12 | ||
9.d | odd | 6 | 1 | 27.2.e.a | ✓ | 12 | |
9.d | odd | 6 | 1 | 243.2.e.c | 12 | ||
27.e | even | 9 | 1 | 81.2.e.a | 12 | ||
27.e | even | 9 | 1 | inner | 243.2.e.a | 12 | |
27.e | even | 9 | 1 | 243.2.e.b | 12 | ||
27.e | even | 9 | 1 | 729.2.a.d | 6 | ||
27.e | even | 9 | 2 | 729.2.c.b | 12 | ||
27.f | odd | 18 | 1 | 27.2.e.a | ✓ | 12 | |
27.f | odd | 18 | 1 | 243.2.e.c | 12 | ||
27.f | odd | 18 | 1 | 243.2.e.d | 12 | ||
27.f | odd | 18 | 1 | 729.2.a.a | 6 | ||
27.f | odd | 18 | 2 | 729.2.c.e | 12 | ||
36.h | even | 6 | 1 | 432.2.u.c | 12 | ||
45.h | odd | 6 | 1 | 675.2.l.c | 12 | ||
45.l | even | 12 | 2 | 675.2.u.b | 24 | ||
108.l | even | 18 | 1 | 432.2.u.c | 12 | ||
135.n | odd | 18 | 1 | 675.2.l.c | 12 | ||
135.q | even | 36 | 2 | 675.2.u.b | 24 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
27.2.e.a | ✓ | 12 | 9.d | odd | 6 | 1 | |
27.2.e.a | ✓ | 12 | 27.f | odd | 18 | 1 | |
81.2.e.a | 12 | 9.c | even | 3 | 1 | ||
81.2.e.a | 12 | 27.e | even | 9 | 1 | ||
243.2.e.a | 12 | 1.a | even | 1 | 1 | trivial | |
243.2.e.a | 12 | 27.e | even | 9 | 1 | inner | |
243.2.e.b | 12 | 9.c | even | 3 | 1 | ||
243.2.e.b | 12 | 27.e | even | 9 | 1 | ||
243.2.e.c | 12 | 9.d | odd | 6 | 1 | ||
243.2.e.c | 12 | 27.f | odd | 18 | 1 | ||
243.2.e.d | 12 | 3.b | odd | 2 | 1 | ||
243.2.e.d | 12 | 27.f | odd | 18 | 1 | ||
432.2.u.c | 12 | 36.h | even | 6 | 1 | ||
432.2.u.c | 12 | 108.l | even | 18 | 1 | ||
675.2.l.c | 12 | 45.h | odd | 6 | 1 | ||
675.2.l.c | 12 | 135.n | odd | 18 | 1 | ||
675.2.u.b | 24 | 45.l | even | 12 | 2 | ||
675.2.u.b | 24 | 135.q | even | 36 | 2 | ||
729.2.a.a | 6 | 27.f | odd | 18 | 1 | ||
729.2.a.d | 6 | 27.e | even | 9 | 1 | ||
729.2.c.b | 12 | 27.e | even | 9 | 2 | ||
729.2.c.e | 12 | 27.f | odd | 18 | 2 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
acting on .