Properties

Label 243.2.e.a
Level 243243
Weight 22
Character orbit 243.e
Analytic conductor 1.9401.940
Analytic rank 00
Dimension 1212
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [243,2,Mod(28,243)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(243, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([8]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("243.28");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 243=35 243 = 3^{5}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 243.e (of order 99, degree 66, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 1.940364769121.94036476912
Analytic rank: 00
Dimension: 1212
Relative dimension: 22 over Q(ζ9)\Q(\zeta_{9})
Coefficient field: 12.0.1952986685049.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x126x11+27x1080x9+186x8330x7+463x6504x5+420x4++3 x^{12} - 6 x^{11} + 27 x^{10} - 80 x^{9} + 186 x^{8} - 330 x^{7} + 463 x^{6} - 504 x^{5} + 420 x^{4} + \cdots + 3 Copy content Toggle raw display
Coefficient ring: Z[a1,,a4]\Z[a_1, \ldots, a_{4}]
Coefficient ring index: 3 3
Twist minimal: no (minimal twist has level 27)
Sato-Tate group: SU(2)[C9]\mathrm{SU}(2)[C_{9}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β111,\beta_1,\ldots,\beta_{11} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(β11β8β2)q2+(β9+β8+β6+1)q4+(β8+β6β5+1)q5+(2β11+β102β9+1)q7++(10β11+3β10++1)q98+O(q100) q + ( - \beta_{11} - \beta_{8} - \beta_{2}) q^{2} + ( - \beta_{9} + \beta_{8} + \beta_{6} + \cdots - 1) q^{4} + ( - \beta_{8} + \beta_{6} - \beta_{5} + \cdots - 1) q^{5} + (2 \beta_{11} + \beta_{10} - 2 \beta_{9} + \cdots - 1) q^{7}+ \cdots + (10 \beta_{11} + 3 \beta_{10} + \cdots + 1) q^{98}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 12q3q2+3q46q5+3q76q83q10+6q11+3q13+21q14+9q169q173q1924q20+12q22+12q23+12q25+30q2612q28++45q98+O(q100) 12 q - 3 q^{2} + 3 q^{4} - 6 q^{5} + 3 q^{7} - 6 q^{8} - 3 q^{10} + 6 q^{11} + 3 q^{13} + 21 q^{14} + 9 q^{16} - 9 q^{17} - 3 q^{19} - 24 q^{20} + 12 q^{22} + 12 q^{23} + 12 q^{25} + 30 q^{26} - 12 q^{28}+ \cdots + 45 q^{98}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x126x11+27x1080x9+186x8330x7+463x6504x5+420x4++3 x^{12} - 6 x^{11} + 27 x^{10} - 80 x^{9} + 186 x^{8} - 330 x^{7} + 463 x^{6} - 504 x^{5} + 420 x^{4} + \cdots + 3 : Copy content Toggle raw display

β1\beta_{1}== ν105ν9+22ν858ν7+127ν6199ν5+249ν4224ν3++9 \nu^{10} - 5 \nu^{9} + 22 \nu^{8} - 58 \nu^{7} + 127 \nu^{6} - 199 \nu^{5} + 249 \nu^{4} - 224 \nu^{3} + \cdots + 9 Copy content Toggle raw display
β2\beta_{2}== 3ν1116ν10+71ν9197ν8+445ν7747ν6+1006ν5+25 3 \nu^{11} - 16 \nu^{10} + 71 \nu^{9} - 197 \nu^{8} + 445 \nu^{7} - 747 \nu^{6} + 1006 \nu^{5} + \cdots - 25 Copy content Toggle raw display
β3\beta_{3}== 6ν11+32ν10140ν9+384ν8849ν7+1390ν61805ν5++25 - 6 \nu^{11} + 32 \nu^{10} - 140 \nu^{9} + 384 \nu^{8} - 849 \nu^{7} + 1390 \nu^{6} - 1805 \nu^{5} + \cdots + 25 Copy content Toggle raw display
β4\beta_{4}== 9ν11+49ν10216ν9+601ν81344ν7+2232ν62942ν5++49 - 9 \nu^{11} + 49 \nu^{10} - 216 \nu^{9} + 601 \nu^{8} - 1344 \nu^{7} + 2232 \nu^{6} - 2942 \nu^{5} + \cdots + 49 Copy content Toggle raw display
β5\beta_{5}== 9ν1150ν10+221ν9623ν8+1402ν72360ν6+3144ν5+62 9 \nu^{11} - 50 \nu^{10} + 221 \nu^{9} - 623 \nu^{8} + 1402 \nu^{7} - 2360 \nu^{6} + 3144 \nu^{5} + \cdots - 62 Copy content Toggle raw display
β6\beta_{6}== 11ν1160ν10+265ν9739ν8+1657ν72761ν6+3653ν5+61 11 \nu^{11} - 60 \nu^{10} + 265 \nu^{9} - 739 \nu^{8} + 1657 \nu^{7} - 2761 \nu^{6} + 3653 \nu^{5} + \cdots - 61 Copy content Toggle raw display
β7\beta_{7}== 16ν11+87ν10383ν9+1064ν82375ν7+3936ν65176ν5++85 - 16 \nu^{11} + 87 \nu^{10} - 383 \nu^{9} + 1064 \nu^{8} - 2375 \nu^{7} + 3936 \nu^{6} - 5176 \nu^{5} + \cdots + 85 Copy content Toggle raw display
β8\beta_{8}== 16ν11+89ν10393ν9+1108ν82491ν7+4191ν65577ν5++110 - 16 \nu^{11} + 89 \nu^{10} - 393 \nu^{9} + 1108 \nu^{8} - 2491 \nu^{7} + 4191 \nu^{6} - 5577 \nu^{5} + \cdots + 110 Copy content Toggle raw display
β9\beta_{9}== 36ν11198ν10+873ν92443ν8+5472ν79134ν6+12076ν5+209 36 \nu^{11} - 198 \nu^{10} + 873 \nu^{9} - 2443 \nu^{8} + 5472 \nu^{7} - 9134 \nu^{6} + 12076 \nu^{5} + \cdots - 209 Copy content Toggle raw display
β10\beta_{10}== 36ν11+198ν10873ν9+2444ν85476ν7+9150ν612110ν5++217 - 36 \nu^{11} + 198 \nu^{10} - 873 \nu^{9} + 2444 \nu^{8} - 5476 \nu^{7} + 9150 \nu^{6} - 12110 \nu^{5} + \cdots + 217 Copy content Toggle raw display
β11\beta_{11}== 42ν11+231ν101019ν9+2853ν86396ν7+10689ν614157ν5++257 - 42 \nu^{11} + 231 \nu^{10} - 1019 \nu^{9} + 2853 \nu^{8} - 6396 \nu^{7} + 10689 \nu^{6} - 14157 \nu^{5} + \cdots + 257 Copy content Toggle raw display
ν\nu== (β11β10+β9+β8+β72β6+β52β4++3)/3 ( \beta_{11} - \beta_{10} + \beta_{9} + \beta_{8} + \beta_{7} - 2 \beta_{6} + \beta_{5} - 2 \beta_{4} + \cdots + 3 ) / 3 Copy content Toggle raw display
ν2\nu^{2}== (β11β10+β9+4β82β72β6+4β5+β4+6)/3 ( \beta_{11} - \beta_{10} + \beta_{9} + 4 \beta_{8} - 2 \beta_{7} - 2 \beta_{6} + 4 \beta_{5} + \beta_{4} + \cdots - 6 ) / 3 Copy content Toggle raw display
ν3\nu^{3}== (5β11+5β105β9+β88β7+7β6+4β5+18)/3 ( - 5 \beta_{11} + 5 \beta_{10} - 5 \beta_{9} + \beta_{8} - 8 \beta_{7} + 7 \beta_{6} + 4 \beta_{5} + \cdots - 18 ) / 3 Copy content Toggle raw display
ν4\nu^{4}== (11β11+17β105β920β8+4β7+16β614β5++6)/3 ( - 11 \beta_{11} + 17 \beta_{10} - 5 \beta_{9} - 20 \beta_{8} + 4 \beta_{7} + 16 \beta_{6} - 14 \beta_{5} + \cdots + 6 ) / 3 Copy content Toggle raw display
ν5\nu^{5}== (19β11β10+31β932β8+43β720β641β5++87)/3 ( 19 \beta_{11} - \beta_{10} + 31 \beta_{9} - 32 \beta_{8} + 43 \beta_{7} - 20 \beta_{6} - 41 \beta_{5} + \cdots + 87 ) / 3 Copy content Toggle raw display
ν6\nu^{6}== (85β1197β10+55β9+64β8+10β7101β6+19β5++60)/3 ( 85 \beta_{11} - 97 \beta_{10} + 55 \beta_{9} + 64 \beta_{8} + 10 \beta_{7} - 101 \beta_{6} + 19 \beta_{5} + \cdots + 60 ) / 3 Copy content Toggle raw display
ν7\nu^{7}== (20β11118β10134β9+244β8218β7+β6+357)/3 ( - 20 \beta_{11} - 118 \beta_{10} - 134 \beta_{9} + 244 \beta_{8} - 218 \beta_{7} + \beta_{6} + \cdots - 357 ) / 3 Copy content Toggle raw display
ν8\nu^{8}== (503β11+386β10440β947β8233β7+514β6+639)/3 ( - 503 \beta_{11} + 386 \beta_{10} - 440 \beta_{9} - 47 \beta_{8} - 233 \beta_{7} + 514 \beta_{6} + \cdots - 639 ) / 3 Copy content Toggle raw display
ν9\nu^{9}== (425β11+1076β10+319β91313β8+955β7+502β6++1164)/3 ( - 425 \beta_{11} + 1076 \beta_{10} + 319 \beta_{9} - 1313 \beta_{8} + 955 \beta_{7} + 502 \beta_{6} + \cdots + 1164 ) / 3 Copy content Toggle raw display
ν10\nu^{10}== (2299β11862β10+2725β91193β8+2104β72135β6++4356)/3 ( 2299 \beta_{11} - 862 \beta_{10} + 2725 \beta_{9} - 1193 \beta_{8} + 2104 \beta_{7} - 2135 \beta_{6} + \cdots + 4356 ) / 3 Copy content Toggle raw display
ν11\nu^{11}== (4708β116628β10+985β9+5506β83107β74679β6+1698)/3 ( 4708 \beta_{11} - 6628 \beta_{10} + 985 \beta_{9} + 5506 \beta_{8} - 3107 \beta_{7} - 4679 \beta_{6} + \cdots - 1698 ) / 3 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/243Z)×\left(\mathbb{Z}/243\mathbb{Z}\right)^\times.

nn 22
χ(n)\chi(n) β8β9\beta_{8} - \beta_{9}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
28.1
0.500000 + 0.258654i
0.500000 2.22827i
0.500000 + 1.00210i
0.500000 1.68614i
0.500000 + 0.0126039i
0.500000 + 1.27297i
0.500000 0.0126039i
0.500000 1.27297i
0.500000 1.00210i
0.500000 + 1.68614i
0.500000 0.258654i
0.500000 + 2.22827i
0.0721450 + 0.409154i 0 1.71718 0.625003i −1.69693 1.42389i 0 1.24005 + 0.451340i 0.795075 + 1.37711i 0 0.460168 0.797034i
28.2 0.367548 + 2.08447i 0 −2.33052 + 0.848241i 2.05537 + 1.72466i 0 −0.913694 0.332557i −0.508086 0.880031i 0 −2.83955 + 4.91825i
55.1 −2.25679 + 0.821403i 0 2.88629 2.42189i −0.0161638 0.0916693i 0 −0.444200 0.372728i −2.12277 + 3.67675i 0 0.111776 + 0.193601i
55.2 0.990741 0.360600i 0 −0.680553 + 0.571052i 0.303153 + 1.71926i 0 1.88389 + 1.58077i −1.52266 + 2.63732i 0 0.920313 + 1.59403i
109.1 −1.28765 + 1.08047i 0 0.143341 0.812925i −1.06142 + 0.386327i 0 −0.678777 3.84954i −0.987144 1.70978i 0 0.949332 1.64429i
109.2 0.614005 0.515212i 0 −0.235737 + 1.33693i −2.58401 + 0.940501i 0 0.412733 + 2.34072i 1.34559 + 2.33062i 0 −1.10204 + 1.90878i
136.1 −1.28765 1.08047i 0 0.143341 + 0.812925i −1.06142 0.386327i 0 −0.678777 + 3.84954i −0.987144 + 1.70978i 0 0.949332 + 1.64429i
136.2 0.614005 + 0.515212i 0 −0.235737 1.33693i −2.58401 0.940501i 0 0.412733 2.34072i 1.34559 2.33062i 0 −1.10204 1.90878i
190.1 −2.25679 0.821403i 0 2.88629 + 2.42189i −0.0161638 + 0.0916693i 0 −0.444200 + 0.372728i −2.12277 3.67675i 0 0.111776 0.193601i
190.2 0.990741 + 0.360600i 0 −0.680553 0.571052i 0.303153 1.71926i 0 1.88389 1.58077i −1.52266 2.63732i 0 0.920313 1.59403i
217.1 0.0721450 0.409154i 0 1.71718 + 0.625003i −1.69693 + 1.42389i 0 1.24005 0.451340i 0.795075 1.37711i 0 0.460168 + 0.797034i
217.2 0.367548 2.08447i 0 −2.33052 0.848241i 2.05537 1.72466i 0 −0.913694 + 0.332557i −0.508086 + 0.880031i 0 −2.83955 4.91825i
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 28.2
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
27.e even 9 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 243.2.e.a 12
3.b odd 2 1 243.2.e.d 12
9.c even 3 1 81.2.e.a 12
9.c even 3 1 243.2.e.b 12
9.d odd 6 1 27.2.e.a 12
9.d odd 6 1 243.2.e.c 12
27.e even 9 1 81.2.e.a 12
27.e even 9 1 inner 243.2.e.a 12
27.e even 9 1 243.2.e.b 12
27.e even 9 1 729.2.a.d 6
27.e even 9 2 729.2.c.b 12
27.f odd 18 1 27.2.e.a 12
27.f odd 18 1 243.2.e.c 12
27.f odd 18 1 243.2.e.d 12
27.f odd 18 1 729.2.a.a 6
27.f odd 18 2 729.2.c.e 12
36.h even 6 1 432.2.u.c 12
45.h odd 6 1 675.2.l.c 12
45.l even 12 2 675.2.u.b 24
108.l even 18 1 432.2.u.c 12
135.n odd 18 1 675.2.l.c 12
135.q even 36 2 675.2.u.b 24
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
27.2.e.a 12 9.d odd 6 1
27.2.e.a 12 27.f odd 18 1
81.2.e.a 12 9.c even 3 1
81.2.e.a 12 27.e even 9 1
243.2.e.a 12 1.a even 1 1 trivial
243.2.e.a 12 27.e even 9 1 inner
243.2.e.b 12 9.c even 3 1
243.2.e.b 12 27.e even 9 1
243.2.e.c 12 9.d odd 6 1
243.2.e.c 12 27.f odd 18 1
243.2.e.d 12 3.b odd 2 1
243.2.e.d 12 27.f odd 18 1
432.2.u.c 12 36.h even 6 1
432.2.u.c 12 108.l even 18 1
675.2.l.c 12 45.h odd 6 1
675.2.l.c 12 135.n odd 18 1
675.2.u.b 24 45.l even 12 2
675.2.u.b 24 135.q even 36 2
729.2.a.a 6 27.f odd 18 1
729.2.a.d 6 27.e even 9 1
729.2.c.b 12 27.e even 9 2
729.2.c.e 12 27.f odd 18 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T212+3T211+3T210+6T29+9T2827T2721T26++9 T_{2}^{12} + 3 T_{2}^{11} + 3 T_{2}^{10} + 6 T_{2}^{9} + 9 T_{2}^{8} - 27 T_{2}^{7} - 21 T_{2}^{6} + \cdots + 9 acting on S2new(243,[χ])S_{2}^{\mathrm{new}}(243, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T12+3T11++9 T^{12} + 3 T^{11} + \cdots + 9 Copy content Toggle raw display
33 T12 T^{12} Copy content Toggle raw display
55 T12+6T11++9 T^{12} + 6 T^{11} + \cdots + 9 Copy content Toggle raw display
77 T123T11++289 T^{12} - 3 T^{11} + \cdots + 289 Copy content Toggle raw display
1111 T126T11++9 T^{12} - 6 T^{11} + \cdots + 9 Copy content Toggle raw display
1313 T123T11++1 T^{12} - 3 T^{11} + \cdots + 1 Copy content Toggle raw display
1717 T12+9T11++729 T^{12} + 9 T^{11} + \cdots + 729 Copy content Toggle raw display
1919 T12+3T11++361 T^{12} + 3 T^{11} + \cdots + 361 Copy content Toggle raw display
2323 T1212T11++106929 T^{12} - 12 T^{11} + \cdots + 106929 Copy content Toggle raw display
2929 T1224T11++45369 T^{12} - 24 T^{11} + \cdots + 45369 Copy content Toggle raw display
3131 T1212T11++26569 T^{12} - 12 T^{11} + \cdots + 26569 Copy content Toggle raw display
3737 T12+3T11++24334489 T^{12} + 3 T^{11} + \cdots + 24334489 Copy content Toggle raw display
4141 T12+6T11++11229201 T^{12} + 6 T^{11} + \cdots + 11229201 Copy content Toggle raw display
4343 T12+15T11++3308761 T^{12} + 15 T^{11} + \cdots + 3308761 Copy content Toggle raw display
4747 T12+12T11++42732369 T^{12} + 12 T^{11} + \cdots + 42732369 Copy content Toggle raw display
5353 (T69T5+12393)2 (T^{6} - 9 T^{5} + \cdots - 12393)^{2} Copy content Toggle raw display
5959 T12++176384961 T^{12} + \cdots + 176384961 Copy content Toggle raw display
6161 T12++273670849 T^{12} + \cdots + 273670849 Copy content Toggle raw display
6767 T12+6T11++8288641 T^{12} + 6 T^{11} + \cdots + 8288641 Copy content Toggle raw display
7171 T12+27T11++729 T^{12} + 27 T^{11} + \cdots + 729 Copy content Toggle raw display
7373 T126T11++185761 T^{12} - 6 T^{11} + \cdots + 185761 Copy content Toggle raw display
7979 T1221T11++3508129 T^{12} - 21 T^{11} + \cdots + 3508129 Copy content Toggle raw display
8383 T12++6951057129 T^{12} + \cdots + 6951057129 Copy content Toggle raw display
8989 T12++1062042921 T^{12} + \cdots + 1062042921 Copy content Toggle raw display
9797 T1239T11++66765241 T^{12} - 39 T^{11} + \cdots + 66765241 Copy content Toggle raw display
show more
show less