Properties

Label 729.2.a.d
Level $729$
Weight $2$
Character orbit 729.a
Self dual yes
Analytic conductor $5.821$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [729,2,Mod(1,729)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(729, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("729.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 729 = 3^{6} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 729.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(5.82109430735\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.6.1397493.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 3x^{5} - 3x^{4} + 10x^{3} + 3x^{2} - 6x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 27)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_{5} + \beta_1) q^{2} + ( - \beta_{3} - \beta_{2} + \beta_1) q^{4} + (\beta_{4} + 1) q^{5} + (\beta_{5} + \beta_{4} + \beta_{2}) q^{7} + ( - \beta_{5} - 2 \beta_{3} - \beta_{2} + 1) q^{8} + (2 \beta_{5} + \beta_{4} + \cdots + \beta_1) q^{10}+ \cdots + (\beta_{5} + \beta_{4} + 2 \beta_{3} + \cdots - 6) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 3 q^{2} + 3 q^{4} + 6 q^{5} + 6 q^{8} + 3 q^{10} + 12 q^{11} + 6 q^{14} - 3 q^{16} + 9 q^{17} + 3 q^{19} + 6 q^{20} + 6 q^{22} + 15 q^{23} - 6 q^{25} + 15 q^{26} - 6 q^{28} + 12 q^{29} + 12 q^{35}+ \cdots - 45 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} - 3x^{5} - 3x^{4} + 10x^{3} + 3x^{2} - 6x + 1 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - \nu - 2 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{3} - 2\nu^{2} - 2\nu + 2 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( \nu^{4} - 3\nu^{3} - \nu^{2} + 6\nu - 1 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( \nu^{5} - 3\nu^{4} - 3\nu^{3} + 9\nu^{2} + 4\nu - 3 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + \beta _1 + 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{3} + 2\beta_{2} + 4\beta _1 + 2 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( \beta_{4} + 3\beta_{3} + 7\beta_{2} + 7\beta _1 + 9 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( \beta_{5} + 3\beta_{4} + 12\beta_{3} + 18\beta_{2} + 20\beta _1 + 18 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0.198473
−1.40162
−1.11662
2.68091
0.584534
2.05432
−1.68091 0 0.825466 1.12954 0 −3.90892 1.97429 0 −1.89866
1.2 −1.05432 0 −0.888399 1.74579 0 2.45925 3.04531 0 −1.84063
1.3 0.415466 0 −1.82739 −2.21519 0 −1.31963 −1.59015 0 −0.920335
1.4 0.801527 0 −1.35755 2.74984 0 2.37683 −2.69117 0 2.20407
1.5 2.11662 0 2.48009 2.68310 0 0.972333 1.01617 0 5.67911
1.6 2.40162 0 3.76778 −0.0930834 0 −0.579861 4.24555 0 −0.223551
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.6
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 729.2.a.d 6
3.b odd 2 1 729.2.a.a 6
9.c even 3 2 729.2.c.b 12
9.d odd 6 2 729.2.c.e 12
27.e even 9 2 81.2.e.a 12
27.e even 9 2 243.2.e.a 12
27.e even 9 2 243.2.e.b 12
27.f odd 18 2 27.2.e.a 12
27.f odd 18 2 243.2.e.c 12
27.f odd 18 2 243.2.e.d 12
108.l even 18 2 432.2.u.c 12
135.n odd 18 2 675.2.l.c 12
135.q even 36 4 675.2.u.b 24
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
27.2.e.a 12 27.f odd 18 2
81.2.e.a 12 27.e even 9 2
243.2.e.a 12 27.e even 9 2
243.2.e.b 12 27.e even 9 2
243.2.e.c 12 27.f odd 18 2
243.2.e.d 12 27.f odd 18 2
432.2.u.c 12 108.l even 18 2
675.2.l.c 12 135.n odd 18 2
675.2.u.b 24 135.q even 36 4
729.2.a.a 6 3.b odd 2 1
729.2.a.d 6 1.a even 1 1 trivial
729.2.c.b 12 9.c even 3 2
729.2.c.e 12 9.d odd 6 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{6} - 3T_{2}^{5} - 3T_{2}^{4} + 12T_{2}^{3} - 9T_{2} + 3 \) acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(729))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} - 3 T^{5} + \cdots + 3 \) Copy content Toggle raw display
$3$ \( T^{6} \) Copy content Toggle raw display
$5$ \( T^{6} - 6 T^{5} + \cdots + 3 \) Copy content Toggle raw display
$7$ \( T^{6} - 15 T^{4} + \cdots - 17 \) Copy content Toggle raw display
$11$ \( T^{6} - 12 T^{5} + \cdots + 3 \) Copy content Toggle raw display
$13$ \( T^{6} - 24 T^{4} + \cdots + 1 \) Copy content Toggle raw display
$17$ \( T^{6} - 9 T^{5} + \cdots + 27 \) Copy content Toggle raw display
$19$ \( T^{6} - 3 T^{5} + \cdots + 19 \) Copy content Toggle raw display
$23$ \( T^{6} - 15 T^{5} + \cdots + 327 \) Copy content Toggle raw display
$29$ \( T^{6} - 12 T^{5} + \cdots - 213 \) Copy content Toggle raw display
$31$ \( T^{6} - 51 T^{4} + \cdots + 163 \) Copy content Toggle raw display
$37$ \( T^{6} - 3 T^{5} + \cdots + 4933 \) Copy content Toggle raw display
$41$ \( T^{6} - 15 T^{5} + \cdots + 3351 \) Copy content Toggle raw display
$43$ \( T^{6} - 96 T^{4} + \cdots + 1819 \) Copy content Toggle raw display
$47$ \( T^{6} - 21 T^{5} + \cdots + 6537 \) Copy content Toggle raw display
$53$ \( T^{6} - 9 T^{5} + \cdots - 12393 \) Copy content Toggle raw display
$59$ \( T^{6} - 24 T^{5} + \cdots - 13281 \) Copy content Toggle raw display
$61$ \( T^{6} + 9 T^{5} + \cdots + 16543 \) Copy content Toggle raw display
$67$ \( T^{6} + 9 T^{5} + \cdots - 2879 \) Copy content Toggle raw display
$71$ \( T^{6} - 27 T^{5} + \cdots + 27 \) Copy content Toggle raw display
$73$ \( T^{6} + 6 T^{5} + \cdots - 431 \) Copy content Toggle raw display
$79$ \( T^{6} - 177 T^{4} + \cdots + 1873 \) Copy content Toggle raw display
$83$ \( T^{6} - 12 T^{5} + \cdots - 83373 \) Copy content Toggle raw display
$89$ \( T^{6} - 9 T^{5} + \cdots + 32589 \) Copy content Toggle raw display
$97$ \( T^{6} - 204 T^{4} + \cdots - 8171 \) Copy content Toggle raw display
show more
show less