L(s) = 1 | + (−1.96 + 0.376i)2-s + (0.977 + 0.977i)3-s + (3.71 − 1.47i)4-s + (−0.801 + 4.93i)5-s + (−2.28 − 1.55i)6-s + (8.39 + 8.39i)7-s + (−6.74 + 4.30i)8-s − 7.08i·9-s + (−0.284 − 9.99i)10-s − 4.01i·11-s + (5.07 + 2.18i)12-s + (−11.0 − 11.0i)13-s + (−19.6 − 13.3i)14-s + (−5.60 + 4.04i)15-s + (11.6 − 10.9i)16-s + (−3.79 − 3.79i)17-s + ⋯ |
L(s) = 1 | + (−0.982 + 0.188i)2-s + (0.325 + 0.325i)3-s + (0.929 − 0.369i)4-s + (−0.160 + 0.987i)5-s + (−0.381 − 0.258i)6-s + (1.19 + 1.19i)7-s + (−0.842 + 0.538i)8-s − 0.787i·9-s + (−0.0284 − 0.999i)10-s − 0.365i·11-s + (0.423 + 0.182i)12-s + (−0.852 − 0.852i)13-s + (−1.40 − 0.952i)14-s + (−0.373 + 0.269i)15-s + (0.726 − 0.687i)16-s + (−0.223 − 0.223i)17-s + ⋯ |
Λ(s)=(=(40s/2ΓC(s)L(s)(0.572−0.819i)Λ(3−s)
Λ(s)=(=(40s/2ΓC(s+1)L(s)(0.572−0.819i)Λ(1−s)
Degree: |
2 |
Conductor: |
40
= 23⋅5
|
Sign: |
0.572−0.819i
|
Analytic conductor: |
1.08992 |
Root analytic conductor: |
1.04399 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ40(37,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 40, ( :1), 0.572−0.819i)
|
Particular Values
L(23) |
≈ |
0.728087+0.379440i |
L(21) |
≈ |
0.728087+0.379440i |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(1.96−0.376i)T |
| 5 | 1+(0.801−4.93i)T |
good | 3 | 1+(−0.977−0.977i)T+9iT2 |
| 7 | 1+(−8.39−8.39i)T+49iT2 |
| 11 | 1+4.01iT−121T2 |
| 13 | 1+(11.0+11.0i)T+169iT2 |
| 17 | 1+(3.79+3.79i)T+289iT2 |
| 19 | 1−15.9T+361T2 |
| 23 | 1+(−1.86+1.86i)T−529iT2 |
| 29 | 1+0.468T+841T2 |
| 31 | 1+17.3T+961T2 |
| 37 | 1+(−22.1+22.1i)T−1.36e3iT2 |
| 41 | 1−37.0T+1.68e3T2 |
| 43 | 1+(17.1+17.1i)T+1.84e3iT2 |
| 47 | 1+(6.31+6.31i)T+2.20e3iT2 |
| 53 | 1+(39.8+39.8i)T+2.80e3iT2 |
| 59 | 1−50.6T+3.48e3T2 |
| 61 | 1−73.6iT−3.72e3T2 |
| 67 | 1+(77.6−77.6i)T−4.48e3iT2 |
| 71 | 1+78.3T+5.04e3T2 |
| 73 | 1+(46.0−46.0i)T−5.32e3iT2 |
| 79 | 1−31.6iT−6.24e3T2 |
| 83 | 1+(−84.9−84.9i)T+6.88e3iT2 |
| 89 | 1+92.8iT−7.92e3T2 |
| 97 | 1+(85.3+85.3i)T+9.40e3iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−15.92487894084579303689501918356, −14.93200620850232596676388902214, −14.57719169541953968553787245566, −12.03908203402306474565663879204, −11.16602204789449274440304601155, −9.815282873834098907717211867657, −8.621694223771485524766838757256, −7.41480924646251503671946136048, −5.69822813448357183650096673658, −2.73203339004127467286042670167,
1.61840469457882146303169509298, 4.64895682750197650604453595481, 7.36263101960122504856868056212, 8.031401428184193773325856747379, 9.428582085973932025583416684951, 10.84660326870164440151512645452, 11.94642182721100631186389956628, 13.35254595850387471962253621893, 14.59378114489539997826701686204, 16.26125780390559840544619392194