L(s) = 1 | + (0.376 − 1.96i)2-s + (−0.977 − 0.977i)3-s + (−3.71 − 1.47i)4-s + (0.801 − 4.93i)5-s + (−2.28 + 1.55i)6-s + (8.39 + 8.39i)7-s + (−4.30 + 6.74i)8-s − 7.08i·9-s + (−9.39 − 3.43i)10-s + 4.01i·11-s + (2.18 + 5.07i)12-s + (11.0 + 11.0i)13-s + (19.6 − 13.3i)14-s + (−5.60 + 4.04i)15-s + (11.6 + 10.9i)16-s + (−3.79 − 3.79i)17-s + ⋯ |
L(s) = 1 | + (0.188 − 0.982i)2-s + (−0.325 − 0.325i)3-s + (−0.929 − 0.369i)4-s + (0.160 − 0.987i)5-s + (−0.381 + 0.258i)6-s + (1.19 + 1.19i)7-s + (−0.538 + 0.842i)8-s − 0.787i·9-s + (−0.939 − 0.343i)10-s + 0.365i·11-s + (0.182 + 0.423i)12-s + (0.852 + 0.852i)13-s + (1.40 − 0.952i)14-s + (−0.373 + 0.269i)15-s + (0.726 + 0.687i)16-s + (−0.223 − 0.223i)17-s + ⋯ |
Λ(s)=(=(40s/2ΓC(s)L(s)(−0.174+0.984i)Λ(3−s)
Λ(s)=(=(40s/2ΓC(s+1)L(s)(−0.174+0.984i)Λ(1−s)
Degree: |
2 |
Conductor: |
40
= 23⋅5
|
Sign: |
−0.174+0.984i
|
Analytic conductor: |
1.08992 |
Root analytic conductor: |
1.04399 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ40(37,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 40, ( :1), −0.174+0.984i)
|
Particular Values
L(23) |
≈ |
0.685346−0.817632i |
L(21) |
≈ |
0.685346−0.817632i |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.376+1.96i)T |
| 5 | 1+(−0.801+4.93i)T |
good | 3 | 1+(0.977+0.977i)T+9iT2 |
| 7 | 1+(−8.39−8.39i)T+49iT2 |
| 11 | 1−4.01iT−121T2 |
| 13 | 1+(−11.0−11.0i)T+169iT2 |
| 17 | 1+(3.79+3.79i)T+289iT2 |
| 19 | 1+15.9T+361T2 |
| 23 | 1+(−1.86+1.86i)T−529iT2 |
| 29 | 1−0.468T+841T2 |
| 31 | 1+17.3T+961T2 |
| 37 | 1+(22.1−22.1i)T−1.36e3iT2 |
| 41 | 1−37.0T+1.68e3T2 |
| 43 | 1+(−17.1−17.1i)T+1.84e3iT2 |
| 47 | 1+(6.31+6.31i)T+2.20e3iT2 |
| 53 | 1+(−39.8−39.8i)T+2.80e3iT2 |
| 59 | 1+50.6T+3.48e3T2 |
| 61 | 1+73.6iT−3.72e3T2 |
| 67 | 1+(−77.6+77.6i)T−4.48e3iT2 |
| 71 | 1+78.3T+5.04e3T2 |
| 73 | 1+(46.0−46.0i)T−5.32e3iT2 |
| 79 | 1−31.6iT−6.24e3T2 |
| 83 | 1+(84.9+84.9i)T+6.88e3iT2 |
| 89 | 1+92.8iT−7.92e3T2 |
| 97 | 1+(85.3+85.3i)T+9.40e3iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−15.41464707505327939104578391050, −14.24682247890604941995045022866, −12.83738684804644557253367181097, −12.03265746395214291190423942213, −11.21247707349386498489225303926, −9.265731312929913675324981149489, −8.534081435595439353902316706645, −5.86050524401683726809087358587, −4.50213454319225510339654013382, −1.71340585576837200706113832598,
4.08477870989734593969642599673, 5.66624847404177367050775249227, 7.25189160141571558037832664134, 8.290880986586959322262782367733, 10.42689097676422202929687231271, 11.06389980171498153397616751204, 13.28504075093105623459820413545, 14.10693900150405982363530706277, 15.05256794949393564274397061208, 16.26136033886806312542870582570