L(s) = 1 | − 0.207i·3-s + 2.73·7-s + 2.95·9-s + 0.871i·11-s + 1.98i·13-s − 2.93·17-s − 0.905i·19-s − 0.566i·21-s + 6.50·23-s − 1.23i·27-s + 7.71i·29-s + 4.14·31-s + 0.180·33-s − 0.436i·37-s + 0.410·39-s + ⋯ |
L(s) = 1 | − 0.119i·3-s + 1.03·7-s + 0.985·9-s + 0.262i·11-s + 0.550i·13-s − 0.711·17-s − 0.207i·19-s − 0.123i·21-s + 1.35·23-s − 0.237i·27-s + 1.43i·29-s + 0.744·31-s + 0.0314·33-s − 0.0718i·37-s + 0.0658·39-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 4000 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.914 - 0.404i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4000 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.914 - 0.404i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.433458659\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.433458659\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
good | 3 | \( 1 + 0.207iT - 3T^{2} \) |
| 7 | \( 1 - 2.73T + 7T^{2} \) |
| 11 | \( 1 - 0.871iT - 11T^{2} \) |
| 13 | \( 1 - 1.98iT - 13T^{2} \) |
| 17 | \( 1 + 2.93T + 17T^{2} \) |
| 19 | \( 1 + 0.905iT - 19T^{2} \) |
| 23 | \( 1 - 6.50T + 23T^{2} \) |
| 29 | \( 1 - 7.71iT - 29T^{2} \) |
| 31 | \( 1 - 4.14T + 31T^{2} \) |
| 37 | \( 1 + 0.436iT - 37T^{2} \) |
| 41 | \( 1 - 5.84T + 41T^{2} \) |
| 43 | \( 1 + 3.55iT - 43T^{2} \) |
| 47 | \( 1 + 4.69T + 47T^{2} \) |
| 53 | \( 1 - 9.68iT - 53T^{2} \) |
| 59 | \( 1 + 12.8iT - 59T^{2} \) |
| 61 | \( 1 - 12.7iT - 61T^{2} \) |
| 67 | \( 1 - 10.2iT - 67T^{2} \) |
| 71 | \( 1 - 12.9T + 71T^{2} \) |
| 73 | \( 1 + 9.76T + 73T^{2} \) |
| 79 | \( 1 + 3.02T + 79T^{2} \) |
| 83 | \( 1 + 9.88iT - 83T^{2} \) |
| 89 | \( 1 + 8.04T + 89T^{2} \) |
| 97 | \( 1 - 12.1T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.593880663429921169396447574418, −7.63206079089458574386750163491, −7.08370890265030669514385489550, −6.50778521031429310881532530792, −5.34047665093713371822422330200, −4.66213177074947309171826690518, −4.16357486704042919394180793602, −2.92818234273234868835291097545, −1.87763948153467500935592714677, −1.12129887753862768418249273724,
0.831205180424044530980871050196, 1.83899039927304517593549990994, 2.84978079604928203243441224962, 3.95001150558528903784443455017, 4.66139654621753170941361734562, 5.22932332028934208563084803577, 6.26579957935672803529955770655, 6.94166953859460761455679793943, 7.87430953089406589474747637815, 8.178190511834108910949517853070