L(s) = 1 | − 0.207i·3-s + 2.73·7-s + 2.95·9-s + 0.871i·11-s + 1.98i·13-s − 2.93·17-s − 0.905i·19-s − 0.566i·21-s + 6.50·23-s − 1.23i·27-s + 7.71i·29-s + 4.14·31-s + 0.180·33-s − 0.436i·37-s + 0.410·39-s + ⋯ |
L(s) = 1 | − 0.119i·3-s + 1.03·7-s + 0.985·9-s + 0.262i·11-s + 0.550i·13-s − 0.711·17-s − 0.207i·19-s − 0.123i·21-s + 1.35·23-s − 0.237i·27-s + 1.43i·29-s + 0.744·31-s + 0.0314·33-s − 0.0718i·37-s + 0.0658·39-s + ⋯ |
Λ(s)=(=(4000s/2ΓC(s)L(s)(0.914−0.404i)Λ(2−s)
Λ(s)=(=(4000s/2ΓC(s+1/2)L(s)(0.914−0.404i)Λ(1−s)
Degree: |
2 |
Conductor: |
4000
= 25⋅53
|
Sign: |
0.914−0.404i
|
Analytic conductor: |
31.9401 |
Root analytic conductor: |
5.65156 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ4000(2001,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 4000, ( :1/2), 0.914−0.404i)
|
Particular Values
L(1) |
≈ |
2.433458659 |
L(21) |
≈ |
2.433458659 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
good | 3 | 1+0.207iT−3T2 |
| 7 | 1−2.73T+7T2 |
| 11 | 1−0.871iT−11T2 |
| 13 | 1−1.98iT−13T2 |
| 17 | 1+2.93T+17T2 |
| 19 | 1+0.905iT−19T2 |
| 23 | 1−6.50T+23T2 |
| 29 | 1−7.71iT−29T2 |
| 31 | 1−4.14T+31T2 |
| 37 | 1+0.436iT−37T2 |
| 41 | 1−5.84T+41T2 |
| 43 | 1+3.55iT−43T2 |
| 47 | 1+4.69T+47T2 |
| 53 | 1−9.68iT−53T2 |
| 59 | 1+12.8iT−59T2 |
| 61 | 1−12.7iT−61T2 |
| 67 | 1−10.2iT−67T2 |
| 71 | 1−12.9T+71T2 |
| 73 | 1+9.76T+73T2 |
| 79 | 1+3.02T+79T2 |
| 83 | 1+9.88iT−83T2 |
| 89 | 1+8.04T+89T2 |
| 97 | 1−12.1T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.593880663429921169396447574418, −7.63206079089458574386750163491, −7.08370890265030669514385489550, −6.50778521031429310881532530792, −5.34047665093713371822422330200, −4.66213177074947309171826690518, −4.16357486704042919394180793602, −2.92818234273234868835291097545, −1.87763948153467500935592714677, −1.12129887753862768418249273724,
0.831205180424044530980871050196, 1.83899039927304517593549990994, 2.84978079604928203243441224962, 3.95001150558528903784443455017, 4.66139654621753170941361734562, 5.22932332028934208563084803577, 6.26579957935672803529955770655, 6.94166953859460761455679793943, 7.87430953089406589474747637815, 8.178190511834108910949517853070