Properties

Label 2-4000-8.5-c1-0-50
Degree $2$
Conductor $4000$
Sign $0.914 - 0.404i$
Analytic cond. $31.9401$
Root an. cond. $5.65156$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.207i·3-s + 2.73·7-s + 2.95·9-s + 0.871i·11-s + 1.98i·13-s − 2.93·17-s − 0.905i·19-s − 0.566i·21-s + 6.50·23-s − 1.23i·27-s + 7.71i·29-s + 4.14·31-s + 0.180·33-s − 0.436i·37-s + 0.410·39-s + ⋯
L(s)  = 1  − 0.119i·3-s + 1.03·7-s + 0.985·9-s + 0.262i·11-s + 0.550i·13-s − 0.711·17-s − 0.207i·19-s − 0.123i·21-s + 1.35·23-s − 0.237i·27-s + 1.43i·29-s + 0.744·31-s + 0.0314·33-s − 0.0718i·37-s + 0.0658·39-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4000 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.914 - 0.404i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4000 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.914 - 0.404i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4000\)    =    \(2^{5} \cdot 5^{3}\)
Sign: $0.914 - 0.404i$
Analytic conductor: \(31.9401\)
Root analytic conductor: \(5.65156\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{4000} (2001, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 4000,\ (\ :1/2),\ 0.914 - 0.404i)\)

Particular Values

\(L(1)\) \(\approx\) \(2.433458659\)
\(L(\frac12)\) \(\approx\) \(2.433458659\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
good3 \( 1 + 0.207iT - 3T^{2} \)
7 \( 1 - 2.73T + 7T^{2} \)
11 \( 1 - 0.871iT - 11T^{2} \)
13 \( 1 - 1.98iT - 13T^{2} \)
17 \( 1 + 2.93T + 17T^{2} \)
19 \( 1 + 0.905iT - 19T^{2} \)
23 \( 1 - 6.50T + 23T^{2} \)
29 \( 1 - 7.71iT - 29T^{2} \)
31 \( 1 - 4.14T + 31T^{2} \)
37 \( 1 + 0.436iT - 37T^{2} \)
41 \( 1 - 5.84T + 41T^{2} \)
43 \( 1 + 3.55iT - 43T^{2} \)
47 \( 1 + 4.69T + 47T^{2} \)
53 \( 1 - 9.68iT - 53T^{2} \)
59 \( 1 + 12.8iT - 59T^{2} \)
61 \( 1 - 12.7iT - 61T^{2} \)
67 \( 1 - 10.2iT - 67T^{2} \)
71 \( 1 - 12.9T + 71T^{2} \)
73 \( 1 + 9.76T + 73T^{2} \)
79 \( 1 + 3.02T + 79T^{2} \)
83 \( 1 + 9.88iT - 83T^{2} \)
89 \( 1 + 8.04T + 89T^{2} \)
97 \( 1 - 12.1T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.593880663429921169396447574418, −7.63206079089458574386750163491, −7.08370890265030669514385489550, −6.50778521031429310881532530792, −5.34047665093713371822422330200, −4.66213177074947309171826690518, −4.16357486704042919394180793602, −2.92818234273234868835291097545, −1.87763948153467500935592714677, −1.12129887753862768418249273724, 0.831205180424044530980871050196, 1.83899039927304517593549990994, 2.84978079604928203243441224962, 3.95001150558528903784443455017, 4.66139654621753170941361734562, 5.22932332028934208563084803577, 6.26579957935672803529955770655, 6.94166953859460761455679793943, 7.87430953089406589474747637815, 8.178190511834108910949517853070

Graph of the $Z$-function along the critical line