Properties

Label 4000.2.d.c.2001.11
Level $4000$
Weight $2$
Character 4000.2001
Analytic conductor $31.940$
Analytic rank $0$
Dimension $40$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4000,2,Mod(2001,4000)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4000, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4000.2001");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4000 = 2^{5} \cdot 5^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4000.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(31.9401608085\)
Analytic rank: \(0\)
Dimension: \(40\)
Twist minimal: no (minimal twist has level 1000)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 2001.11
Character \(\chi\) \(=\) 4000.2001
Dual form 4000.2.d.c.2001.12

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.207209i q^{3} +2.73181 q^{7} +2.95706 q^{9} +0.871377i q^{11} +1.98325i q^{13} -2.93520 q^{17} -0.905406i q^{19} -0.566054i q^{21} +6.50896 q^{23} -1.23435i q^{27} +7.71622i q^{29} +4.14455 q^{31} +0.180557 q^{33} -0.436790i q^{37} +0.410946 q^{39} +5.84841 q^{41} -3.55191i q^{43} -4.69617 q^{47} +0.462766 q^{49} +0.608198i q^{51} +9.68555i q^{53} -0.187608 q^{57} -12.8197i q^{59} +12.7406i q^{61} +8.07813 q^{63} +10.2605i q^{67} -1.34871i q^{69} +12.9184 q^{71} -9.76540 q^{73} +2.38043i q^{77} -3.02177 q^{79} +8.61542 q^{81} -9.88164i q^{83} +1.59887 q^{87} -8.04615 q^{89} +5.41785i q^{91} -0.858786i q^{93} +12.1937 q^{97} +2.57672i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q - 24 q^{9} - 48 q^{31} - 8 q^{39} + 44 q^{41} + 12 q^{49} - 96 q^{71} - 96 q^{79} - 56 q^{81} - 44 q^{89}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/4000\mathbb{Z}\right)^\times\).

\(n\) \(1377\) \(2501\) \(2751\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) − 0.207209i − 0.119632i −0.998209 0.0598160i \(-0.980949\pi\)
0.998209 0.0598160i \(-0.0190514\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 2.73181 1.03253 0.516263 0.856430i \(-0.327323\pi\)
0.516263 + 0.856430i \(0.327323\pi\)
\(8\) 0 0
\(9\) 2.95706 0.985688
\(10\) 0 0
\(11\) 0.871377i 0.262730i 0.991334 + 0.131365i \(0.0419360\pi\)
−0.991334 + 0.131365i \(0.958064\pi\)
\(12\) 0 0
\(13\) 1.98325i 0.550054i 0.961437 + 0.275027i \(0.0886867\pi\)
−0.961437 + 0.275027i \(0.911313\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −2.93520 −0.711890 −0.355945 0.934507i \(-0.615841\pi\)
−0.355945 + 0.934507i \(0.615841\pi\)
\(18\) 0 0
\(19\) − 0.905406i − 0.207714i −0.994592 0.103857i \(-0.966882\pi\)
0.994592 0.103857i \(-0.0331185\pi\)
\(20\) 0 0
\(21\) − 0.566054i − 0.123523i
\(22\) 0 0
\(23\) 6.50896 1.35721 0.678606 0.734502i \(-0.262584\pi\)
0.678606 + 0.734502i \(0.262584\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) − 1.23435i − 0.237552i
\(28\) 0 0
\(29\) 7.71622i 1.43287i 0.697656 + 0.716433i \(0.254227\pi\)
−0.697656 + 0.716433i \(0.745773\pi\)
\(30\) 0 0
\(31\) 4.14455 0.744383 0.372191 0.928156i \(-0.378606\pi\)
0.372191 + 0.928156i \(0.378606\pi\)
\(32\) 0 0
\(33\) 0.180557 0.0314309
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) − 0.436790i − 0.0718078i −0.999355 0.0359039i \(-0.988569\pi\)
0.999355 0.0359039i \(-0.0114310\pi\)
\(38\) 0 0
\(39\) 0.410946 0.0658040
\(40\) 0 0
\(41\) 5.84841 0.913368 0.456684 0.889629i \(-0.349037\pi\)
0.456684 + 0.889629i \(0.349037\pi\)
\(42\) 0 0
\(43\) − 3.55191i − 0.541661i −0.962627 0.270830i \(-0.912702\pi\)
0.962627 0.270830i \(-0.0872983\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −4.69617 −0.685006 −0.342503 0.939517i \(-0.611275\pi\)
−0.342503 + 0.939517i \(0.611275\pi\)
\(48\) 0 0
\(49\) 0.462766 0.0661095
\(50\) 0 0
\(51\) 0.608198i 0.0851648i
\(52\) 0 0
\(53\) 9.68555i 1.33041i 0.746660 + 0.665206i \(0.231656\pi\)
−0.746660 + 0.665206i \(0.768344\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −0.187608 −0.0248493
\(58\) 0 0
\(59\) − 12.8197i − 1.66899i −0.551016 0.834495i \(-0.685760\pi\)
0.551016 0.834495i \(-0.314240\pi\)
\(60\) 0 0
\(61\) 12.7406i 1.63126i 0.578573 + 0.815630i \(0.303610\pi\)
−0.578573 + 0.815630i \(0.696390\pi\)
\(62\) 0 0
\(63\) 8.07813 1.01775
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 10.2605i 1.25352i 0.779212 + 0.626760i \(0.215619\pi\)
−0.779212 + 0.626760i \(0.784381\pi\)
\(68\) 0 0
\(69\) − 1.34871i − 0.162366i
\(70\) 0 0
\(71\) 12.9184 1.53314 0.766569 0.642162i \(-0.221962\pi\)
0.766569 + 0.642162i \(0.221962\pi\)
\(72\) 0 0
\(73\) −9.76540 −1.14295 −0.571477 0.820618i \(-0.693629\pi\)
−0.571477 + 0.820618i \(0.693629\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 2.38043i 0.271276i
\(78\) 0 0
\(79\) −3.02177 −0.339976 −0.169988 0.985446i \(-0.554373\pi\)
−0.169988 + 0.985446i \(0.554373\pi\)
\(80\) 0 0
\(81\) 8.61542 0.957269
\(82\) 0 0
\(83\) − 9.88164i − 1.08465i −0.840169 0.542325i \(-0.817544\pi\)
0.840169 0.542325i \(-0.182456\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 1.59887 0.171417
\(88\) 0 0
\(89\) −8.04615 −0.852891 −0.426445 0.904513i \(-0.640234\pi\)
−0.426445 + 0.904513i \(0.640234\pi\)
\(90\) 0 0
\(91\) 5.41785i 0.567945i
\(92\) 0 0
\(93\) − 0.858786i − 0.0890519i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 12.1937 1.23808 0.619041 0.785359i \(-0.287522\pi\)
0.619041 + 0.785359i \(0.287522\pi\)
\(98\) 0 0
\(99\) 2.57672i 0.258970i
\(100\) 0 0
\(101\) − 5.51432i − 0.548696i −0.961631 0.274348i \(-0.911538\pi\)
0.961631 0.274348i \(-0.0884619\pi\)
\(102\) 0 0
\(103\) −4.98581 −0.491266 −0.245633 0.969363i \(-0.578996\pi\)
−0.245633 + 0.969363i \(0.578996\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) − 12.4436i − 1.20297i −0.798883 0.601486i \(-0.794575\pi\)
0.798883 0.601486i \(-0.205425\pi\)
\(108\) 0 0
\(109\) 4.64042i 0.444472i 0.974993 + 0.222236i \(0.0713355\pi\)
−0.974993 + 0.222236i \(0.928664\pi\)
\(110\) 0 0
\(111\) −0.0905066 −0.00859051
\(112\) 0 0
\(113\) −17.0652 −1.60536 −0.802680 0.596410i \(-0.796593\pi\)
−0.802680 + 0.596410i \(0.796593\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 5.86459i 0.542181i
\(118\) 0 0
\(119\) −8.01840 −0.735045
\(120\) 0 0
\(121\) 10.2407 0.930973
\(122\) 0 0
\(123\) − 1.21184i − 0.109268i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) −3.92450 −0.348243 −0.174121 0.984724i \(-0.555709\pi\)
−0.174121 + 0.984724i \(0.555709\pi\)
\(128\) 0 0
\(129\) −0.735986 −0.0647999
\(130\) 0 0
\(131\) 16.8728i 1.47419i 0.675792 + 0.737093i \(0.263802\pi\)
−0.675792 + 0.737093i \(0.736198\pi\)
\(132\) 0 0
\(133\) − 2.47339i − 0.214470i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −6.81761 −0.582468 −0.291234 0.956652i \(-0.594066\pi\)
−0.291234 + 0.956652i \(0.594066\pi\)
\(138\) 0 0
\(139\) 13.4616i 1.14180i 0.821021 + 0.570898i \(0.193405\pi\)
−0.821021 + 0.570898i \(0.806595\pi\)
\(140\) 0 0
\(141\) 0.973086i 0.0819486i
\(142\) 0 0
\(143\) −1.72816 −0.144516
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) − 0.0958892i − 0.00790880i
\(148\) 0 0
\(149\) − 19.6182i − 1.60719i −0.595179 0.803593i \(-0.702919\pi\)
0.595179 0.803593i \(-0.297081\pi\)
\(150\) 0 0
\(151\) 21.8652 1.77937 0.889684 0.456577i \(-0.150925\pi\)
0.889684 + 0.456577i \(0.150925\pi\)
\(152\) 0 0
\(153\) −8.67957 −0.701702
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) − 5.34144i − 0.426293i −0.977020 0.213147i \(-0.931629\pi\)
0.977020 0.213147i \(-0.0683712\pi\)
\(158\) 0 0
\(159\) 2.00693 0.159160
\(160\) 0 0
\(161\) 17.7812 1.40136
\(162\) 0 0
\(163\) − 17.4676i − 1.36817i −0.729401 0.684086i \(-0.760201\pi\)
0.729401 0.684086i \(-0.239799\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −11.5956 −0.897293 −0.448647 0.893709i \(-0.648094\pi\)
−0.448647 + 0.893709i \(0.648094\pi\)
\(168\) 0 0
\(169\) 9.06673 0.697441
\(170\) 0 0
\(171\) − 2.67734i − 0.204742i
\(172\) 0 0
\(173\) 9.07537i 0.689988i 0.938605 + 0.344994i \(0.112119\pi\)
−0.938605 + 0.344994i \(0.887881\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −2.65636 −0.199664
\(178\) 0 0
\(179\) 10.0236i 0.749200i 0.927186 + 0.374600i \(0.122220\pi\)
−0.927186 + 0.374600i \(0.877780\pi\)
\(180\) 0 0
\(181\) 14.2992i 1.06285i 0.847106 + 0.531424i \(0.178343\pi\)
−0.847106 + 0.531424i \(0.821657\pi\)
\(182\) 0 0
\(183\) 2.63995 0.195151
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) − 2.55767i − 0.187035i
\(188\) 0 0
\(189\) − 3.37202i − 0.245278i
\(190\) 0 0
\(191\) 13.4414 0.972588 0.486294 0.873795i \(-0.338348\pi\)
0.486294 + 0.873795i \(0.338348\pi\)
\(192\) 0 0
\(193\) 20.0219 1.44121 0.720606 0.693345i \(-0.243864\pi\)
0.720606 + 0.693345i \(0.243864\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) − 13.4963i − 0.961568i −0.876839 0.480784i \(-0.840352\pi\)
0.876839 0.480784i \(-0.159648\pi\)
\(198\) 0 0
\(199\) 14.1065 0.999981 0.499990 0.866031i \(-0.333337\pi\)
0.499990 + 0.866031i \(0.333337\pi\)
\(200\) 0 0
\(201\) 2.12607 0.149961
\(202\) 0 0
\(203\) 21.0792i 1.47947i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 19.2474 1.33779
\(208\) 0 0
\(209\) 0.788950 0.0545728
\(210\) 0 0
\(211\) − 13.1355i − 0.904288i −0.891945 0.452144i \(-0.850659\pi\)
0.891945 0.452144i \(-0.149341\pi\)
\(212\) 0 0
\(213\) − 2.67681i − 0.183412i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 11.3221 0.768594
\(218\) 0 0
\(219\) 2.02347i 0.136734i
\(220\) 0 0
\(221\) − 5.82122i − 0.391578i
\(222\) 0 0
\(223\) −0.718852 −0.0481379 −0.0240689 0.999710i \(-0.507662\pi\)
−0.0240689 + 0.999710i \(0.507662\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 12.0713i 0.801198i 0.916254 + 0.400599i \(0.131198\pi\)
−0.916254 + 0.400599i \(0.868802\pi\)
\(228\) 0 0
\(229\) − 10.3408i − 0.683342i −0.939820 0.341671i \(-0.889007\pi\)
0.939820 0.341671i \(-0.110993\pi\)
\(230\) 0 0
\(231\) 0.493246 0.0324532
\(232\) 0 0
\(233\) 4.03296 0.264208 0.132104 0.991236i \(-0.457827\pi\)
0.132104 + 0.991236i \(0.457827\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0.626136i 0.0406719i
\(238\) 0 0
\(239\) 11.7267 0.758540 0.379270 0.925286i \(-0.376175\pi\)
0.379270 + 0.925286i \(0.376175\pi\)
\(240\) 0 0
\(241\) 12.7697 0.822569 0.411284 0.911507i \(-0.365080\pi\)
0.411284 + 0.911507i \(0.365080\pi\)
\(242\) 0 0
\(243\) − 5.48825i − 0.352072i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 1.79564 0.114254
\(248\) 0 0
\(249\) −2.04756 −0.129759
\(250\) 0 0
\(251\) 22.8026i 1.43929i 0.694344 + 0.719644i \(0.255695\pi\)
−0.694344 + 0.719644i \(0.744305\pi\)
\(252\) 0 0
\(253\) 5.67176i 0.356581i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −22.6835 −1.41496 −0.707478 0.706736i \(-0.750167\pi\)
−0.707478 + 0.706736i \(0.750167\pi\)
\(258\) 0 0
\(259\) − 1.19323i − 0.0741435i
\(260\) 0 0
\(261\) 22.8174i 1.41236i
\(262\) 0 0
\(263\) 15.0066 0.925346 0.462673 0.886529i \(-0.346890\pi\)
0.462673 + 0.886529i \(0.346890\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 1.66723i 0.102033i
\(268\) 0 0
\(269\) 15.3940i 0.938591i 0.883041 + 0.469295i \(0.155492\pi\)
−0.883041 + 0.469295i \(0.844508\pi\)
\(270\) 0 0
\(271\) 15.1636 0.921121 0.460561 0.887628i \(-0.347648\pi\)
0.460561 + 0.887628i \(0.347648\pi\)
\(272\) 0 0
\(273\) 1.12262 0.0679443
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 9.80905i 0.589369i 0.955595 + 0.294684i \(0.0952145\pi\)
−0.955595 + 0.294684i \(0.904785\pi\)
\(278\) 0 0
\(279\) 12.2557 0.733729
\(280\) 0 0
\(281\) 3.41960 0.203996 0.101998 0.994785i \(-0.467476\pi\)
0.101998 + 0.994785i \(0.467476\pi\)
\(282\) 0 0
\(283\) 24.5466i 1.45914i 0.683904 + 0.729572i \(0.260281\pi\)
−0.683904 + 0.729572i \(0.739719\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 15.9767 0.943076
\(288\) 0 0
\(289\) −8.38461 −0.493212
\(290\) 0 0
\(291\) − 2.52664i − 0.148114i
\(292\) 0 0
\(293\) − 22.9522i − 1.34088i −0.741962 0.670442i \(-0.766104\pi\)
0.741962 0.670442i \(-0.233896\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 1.07559 0.0624120
\(298\) 0 0
\(299\) 12.9089i 0.746540i
\(300\) 0 0
\(301\) − 9.70312i − 0.559279i
\(302\) 0 0
\(303\) −1.14261 −0.0656415
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 2.31183i 0.131943i 0.997822 + 0.0659714i \(0.0210146\pi\)
−0.997822 + 0.0659714i \(0.978985\pi\)
\(308\) 0 0
\(309\) 1.03310i 0.0587711i
\(310\) 0 0
\(311\) −0.398156 −0.0225774 −0.0112887 0.999936i \(-0.503593\pi\)
−0.0112887 + 0.999936i \(0.503593\pi\)
\(312\) 0 0
\(313\) 27.7896 1.57076 0.785380 0.619013i \(-0.212467\pi\)
0.785380 + 0.619013i \(0.212467\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 16.7194i 0.939056i 0.882918 + 0.469528i \(0.155576\pi\)
−0.882918 + 0.469528i \(0.844424\pi\)
\(318\) 0 0
\(319\) −6.72374 −0.376457
\(320\) 0 0
\(321\) −2.57843 −0.143914
\(322\) 0 0
\(323\) 2.65755i 0.147870i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 0.961535 0.0531730
\(328\) 0 0
\(329\) −12.8290 −0.707286
\(330\) 0 0
\(331\) − 12.7840i − 0.702673i −0.936249 0.351337i \(-0.885727\pi\)
0.936249 0.351337i \(-0.114273\pi\)
\(332\) 0 0
\(333\) − 1.29162i − 0.0707801i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 4.73648 0.258012 0.129006 0.991644i \(-0.458821\pi\)
0.129006 + 0.991644i \(0.458821\pi\)
\(338\) 0 0
\(339\) 3.53606i 0.192052i
\(340\) 0 0
\(341\) 3.61147i 0.195572i
\(342\) 0 0
\(343\) −17.8585 −0.964266
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) − 25.7080i − 1.38008i −0.723773 0.690038i \(-0.757594\pi\)
0.723773 0.690038i \(-0.242406\pi\)
\(348\) 0 0
\(349\) 7.18541i 0.384626i 0.981334 + 0.192313i \(0.0615989\pi\)
−0.981334 + 0.192313i \(0.938401\pi\)
\(350\) 0 0
\(351\) 2.44803 0.130666
\(352\) 0 0
\(353\) 5.97661 0.318103 0.159052 0.987270i \(-0.449156\pi\)
0.159052 + 0.987270i \(0.449156\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 1.66148i 0.0879349i
\(358\) 0 0
\(359\) −30.7769 −1.62434 −0.812171 0.583420i \(-0.801714\pi\)
−0.812171 + 0.583420i \(0.801714\pi\)
\(360\) 0 0
\(361\) 18.1802 0.956855
\(362\) 0 0
\(363\) − 2.12196i − 0.111374i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −22.3956 −1.16904 −0.584520 0.811379i \(-0.698717\pi\)
−0.584520 + 0.811379i \(0.698717\pi\)
\(368\) 0 0
\(369\) 17.2941 0.900296
\(370\) 0 0
\(371\) 26.4590i 1.37368i
\(372\) 0 0
\(373\) 16.1839i 0.837973i 0.907992 + 0.418986i \(0.137615\pi\)
−0.907992 + 0.418986i \(0.862385\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −15.3032 −0.788153
\(378\) 0 0
\(379\) − 10.9692i − 0.563449i −0.959495 0.281724i \(-0.909094\pi\)
0.959495 0.281724i \(-0.0909063\pi\)
\(380\) 0 0
\(381\) 0.813190i 0.0416610i
\(382\) 0 0
\(383\) −18.3816 −0.939256 −0.469628 0.882864i \(-0.655612\pi\)
−0.469628 + 0.882864i \(0.655612\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) − 10.5032i − 0.533909i
\(388\) 0 0
\(389\) − 30.2480i − 1.53364i −0.641865 0.766818i \(-0.721839\pi\)
0.641865 0.766818i \(-0.278161\pi\)
\(390\) 0 0
\(391\) −19.1051 −0.966186
\(392\) 0 0
\(393\) 3.49619 0.176360
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) − 39.1270i − 1.96373i −0.189582 0.981865i \(-0.560713\pi\)
0.189582 0.981865i \(-0.439287\pi\)
\(398\) 0 0
\(399\) −0.512508 −0.0256575
\(400\) 0 0
\(401\) −10.2607 −0.512397 −0.256198 0.966624i \(-0.582470\pi\)
−0.256198 + 0.966624i \(0.582470\pi\)
\(402\) 0 0
\(403\) 8.21966i 0.409451i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0.380609 0.0188661
\(408\) 0 0
\(409\) 10.4383 0.516140 0.258070 0.966126i \(-0.416913\pi\)
0.258070 + 0.966126i \(0.416913\pi\)
\(410\) 0 0
\(411\) 1.41267i 0.0696818i
\(412\) 0 0
\(413\) − 35.0211i − 1.72327i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 2.78935 0.136595
\(418\) 0 0
\(419\) − 36.6607i − 1.79099i −0.445067 0.895497i \(-0.646820\pi\)
0.445067 0.895497i \(-0.353180\pi\)
\(420\) 0 0
\(421\) − 10.4070i − 0.507207i −0.967308 0.253603i \(-0.918384\pi\)
0.967308 0.253603i \(-0.0816158\pi\)
\(422\) 0 0
\(423\) −13.8869 −0.675202
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 34.8047i 1.68432i
\(428\) 0 0
\(429\) 0.358089i 0.0172887i
\(430\) 0 0
\(431\) 10.3866 0.500306 0.250153 0.968206i \(-0.419519\pi\)
0.250153 + 0.968206i \(0.419519\pi\)
\(432\) 0 0
\(433\) 7.01402 0.337072 0.168536 0.985695i \(-0.446096\pi\)
0.168536 + 0.985695i \(0.446096\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) − 5.89325i − 0.281912i
\(438\) 0 0
\(439\) 3.40264 0.162399 0.0811995 0.996698i \(-0.474125\pi\)
0.0811995 + 0.996698i \(0.474125\pi\)
\(440\) 0 0
\(441\) 1.36843 0.0651633
\(442\) 0 0
\(443\) 14.1103i 0.670399i 0.942147 + 0.335199i \(0.108804\pi\)
−0.942147 + 0.335199i \(0.891196\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) −4.06506 −0.192271
\(448\) 0 0
\(449\) −18.9957 −0.896463 −0.448231 0.893918i \(-0.647946\pi\)
−0.448231 + 0.893918i \(0.647946\pi\)
\(450\) 0 0
\(451\) 5.09617i 0.239969i
\(452\) 0 0
\(453\) − 4.53066i − 0.212869i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 28.3050 1.32405 0.662027 0.749480i \(-0.269697\pi\)
0.662027 + 0.749480i \(0.269697\pi\)
\(458\) 0 0
\(459\) 3.62308i 0.169111i
\(460\) 0 0
\(461\) − 11.2576i − 0.524320i −0.965024 0.262160i \(-0.915565\pi\)
0.965024 0.262160i \(-0.0844348\pi\)
\(462\) 0 0
\(463\) 1.11665 0.0518950 0.0259475 0.999663i \(-0.491740\pi\)
0.0259475 + 0.999663i \(0.491740\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) − 1.34496i − 0.0622374i −0.999516 0.0311187i \(-0.990093\pi\)
0.999516 0.0311187i \(-0.00990699\pi\)
\(468\) 0 0
\(469\) 28.0297i 1.29429i
\(470\) 0 0
\(471\) −1.10679 −0.0509983
\(472\) 0 0
\(473\) 3.09505 0.142311
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 28.6408i 1.31137i
\(478\) 0 0
\(479\) −26.2181 −1.19794 −0.598968 0.800773i \(-0.704422\pi\)
−0.598968 + 0.800773i \(0.704422\pi\)
\(480\) 0 0
\(481\) 0.866263 0.0394982
\(482\) 0 0
\(483\) − 3.68442i − 0.167647i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) −12.2782 −0.556378 −0.278189 0.960526i \(-0.589734\pi\)
−0.278189 + 0.960526i \(0.589734\pi\)
\(488\) 0 0
\(489\) −3.61945 −0.163677
\(490\) 0 0
\(491\) − 32.3053i − 1.45792i −0.684558 0.728959i \(-0.740005\pi\)
0.684558 0.728959i \(-0.259995\pi\)
\(492\) 0 0
\(493\) − 22.6486i − 1.02004i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 35.2907 1.58300
\(498\) 0 0
\(499\) − 6.14059i − 0.274890i −0.990509 0.137445i \(-0.956111\pi\)
0.990509 0.137445i \(-0.0438891\pi\)
\(500\) 0 0
\(501\) 2.40270i 0.107345i
\(502\) 0 0
\(503\) −26.1226 −1.16475 −0.582375 0.812921i \(-0.697876\pi\)
−0.582375 + 0.812921i \(0.697876\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) − 1.87870i − 0.0834362i
\(508\) 0 0
\(509\) 8.02196i 0.355567i 0.984070 + 0.177784i \(0.0568927\pi\)
−0.984070 + 0.177784i \(0.943107\pi\)
\(510\) 0 0
\(511\) −26.6772 −1.18013
\(512\) 0 0
\(513\) −1.11759 −0.0493429
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) − 4.09213i − 0.179972i
\(518\) 0 0
\(519\) 1.88049 0.0825446
\(520\) 0 0
\(521\) −37.3348 −1.63567 −0.817833 0.575456i \(-0.804825\pi\)
−0.817833 + 0.575456i \(0.804825\pi\)
\(522\) 0 0
\(523\) 41.8753i 1.83108i 0.402230 + 0.915539i \(0.368235\pi\)
−0.402230 + 0.915539i \(0.631765\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −12.1651 −0.529919
\(528\) 0 0
\(529\) 19.3666 0.842025
\(530\) 0 0
\(531\) − 37.9088i − 1.64510i
\(532\) 0 0
\(533\) 11.5988i 0.502401i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 2.07698 0.0896283
\(538\) 0 0
\(539\) 0.403244i 0.0173690i
\(540\) 0 0
\(541\) 33.1542i 1.42541i 0.701464 + 0.712705i \(0.252530\pi\)
−0.701464 + 0.712705i \(0.747470\pi\)
\(542\) 0 0
\(543\) 2.96291 0.127151
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) − 21.2749i − 0.909650i −0.890581 0.454825i \(-0.849702\pi\)
0.890581 0.454825i \(-0.150298\pi\)
\(548\) 0 0
\(549\) 37.6746i 1.60791i
\(550\) 0 0
\(551\) 6.98631 0.297627
\(552\) 0 0
\(553\) −8.25489 −0.351034
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 1.73333i 0.0734437i 0.999326 + 0.0367219i \(0.0116916\pi\)
−0.999326 + 0.0367219i \(0.988308\pi\)
\(558\) 0 0
\(559\) 7.04431 0.297943
\(560\) 0 0
\(561\) −0.529970 −0.0223754
\(562\) 0 0
\(563\) − 47.0184i − 1.98159i −0.135369 0.990795i \(-0.543222\pi\)
0.135369 0.990795i \(-0.456778\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 23.5357 0.988405
\(568\) 0 0
\(569\) −0.301785 −0.0126515 −0.00632573 0.999980i \(-0.502014\pi\)
−0.00632573 + 0.999980i \(0.502014\pi\)
\(570\) 0 0
\(571\) 30.2200i 1.26467i 0.774697 + 0.632333i \(0.217903\pi\)
−0.774697 + 0.632333i \(0.782097\pi\)
\(572\) 0 0
\(573\) − 2.78518i − 0.116353i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −4.58089 −0.190705 −0.0953524 0.995444i \(-0.530398\pi\)
−0.0953524 + 0.995444i \(0.530398\pi\)
\(578\) 0 0
\(579\) − 4.14872i − 0.172415i
\(580\) 0 0
\(581\) − 26.9947i − 1.11993i
\(582\) 0 0
\(583\) −8.43976 −0.349539
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 0.387716i 0.0160028i 0.999968 + 0.00800138i \(0.00254695\pi\)
−0.999968 + 0.00800138i \(0.997453\pi\)
\(588\) 0 0
\(589\) − 3.75250i − 0.154619i
\(590\) 0 0
\(591\) −2.79654 −0.115034
\(592\) 0 0
\(593\) 14.5864 0.598994 0.299497 0.954097i \(-0.403181\pi\)
0.299497 + 0.954097i \(0.403181\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) − 2.92298i − 0.119630i
\(598\) 0 0
\(599\) −5.66881 −0.231621 −0.115811 0.993271i \(-0.536947\pi\)
−0.115811 + 0.993271i \(0.536947\pi\)
\(600\) 0 0
\(601\) −29.8385 −1.21714 −0.608569 0.793501i \(-0.708256\pi\)
−0.608569 + 0.793501i \(0.708256\pi\)
\(602\) 0 0
\(603\) 30.3410i 1.23558i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −19.4752 −0.790474 −0.395237 0.918579i \(-0.629338\pi\)
−0.395237 + 0.918579i \(0.629338\pi\)
\(608\) 0 0
\(609\) 4.36779 0.176992
\(610\) 0 0
\(611\) − 9.31365i − 0.376790i
\(612\) 0 0
\(613\) − 39.6234i − 1.60037i −0.599752 0.800186i \(-0.704734\pi\)
0.599752 0.800186i \(-0.295266\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −32.0519 −1.29036 −0.645180 0.764031i \(-0.723218\pi\)
−0.645180 + 0.764031i \(0.723218\pi\)
\(618\) 0 0
\(619\) − 17.9597i − 0.721861i −0.932593 0.360930i \(-0.882459\pi\)
0.932593 0.360930i \(-0.117541\pi\)
\(620\) 0 0
\(621\) − 8.03437i − 0.322408i
\(622\) 0 0
\(623\) −21.9805 −0.880632
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) − 0.163477i − 0.00652865i
\(628\) 0 0
\(629\) 1.28207i 0.0511193i
\(630\) 0 0
\(631\) −28.0265 −1.11572 −0.557858 0.829936i \(-0.688377\pi\)
−0.557858 + 0.829936i \(0.688377\pi\)
\(632\) 0 0
\(633\) −2.72180 −0.108182
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 0.917780i 0.0363638i
\(638\) 0 0
\(639\) 38.2007 1.51120
\(640\) 0 0
\(641\) −11.2647 −0.444929 −0.222465 0.974941i \(-0.571410\pi\)
−0.222465 + 0.974941i \(0.571410\pi\)
\(642\) 0 0
\(643\) − 48.2471i − 1.90268i −0.308141 0.951341i \(-0.599707\pi\)
0.308141 0.951341i \(-0.400293\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 31.8798 1.25333 0.626663 0.779291i \(-0.284420\pi\)
0.626663 + 0.779291i \(0.284420\pi\)
\(648\) 0 0
\(649\) 11.1708 0.438494
\(650\) 0 0
\(651\) − 2.34604i − 0.0919484i
\(652\) 0 0
\(653\) 36.3662i 1.42312i 0.702627 + 0.711559i \(0.252010\pi\)
−0.702627 + 0.711559i \(0.747990\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) −28.8769 −1.12660
\(658\) 0 0
\(659\) − 5.48884i − 0.213815i −0.994269 0.106907i \(-0.965905\pi\)
0.994269 0.106907i \(-0.0340949\pi\)
\(660\) 0 0
\(661\) − 29.5221i − 1.14828i −0.818759 0.574138i \(-0.805337\pi\)
0.818759 0.574138i \(-0.194663\pi\)
\(662\) 0 0
\(663\) −1.20621 −0.0468452
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 50.2246i 1.94470i
\(668\) 0 0
\(669\) 0.148952i 0.00575883i
\(670\) 0 0
\(671\) −11.1018 −0.428581
\(672\) 0 0
\(673\) −41.5796 −1.60278 −0.801389 0.598144i \(-0.795905\pi\)
−0.801389 + 0.598144i \(0.795905\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 35.3724i 1.35947i 0.733457 + 0.679736i \(0.237906\pi\)
−0.733457 + 0.679736i \(0.762094\pi\)
\(678\) 0 0
\(679\) 33.3108 1.27835
\(680\) 0 0
\(681\) 2.50127 0.0958488
\(682\) 0 0
\(683\) 22.5077i 0.861233i 0.902535 + 0.430617i \(0.141704\pi\)
−0.902535 + 0.430617i \(0.858296\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) −2.14271 −0.0817496
\(688\) 0 0
\(689\) −19.2088 −0.731798
\(690\) 0 0
\(691\) − 0.855355i − 0.0325392i −0.999868 0.0162696i \(-0.994821\pi\)
0.999868 0.0162696i \(-0.00517901\pi\)
\(692\) 0 0
\(693\) 7.03910i 0.267393i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −17.1662 −0.650218
\(698\) 0 0
\(699\) − 0.835664i − 0.0316077i
\(700\) 0 0
\(701\) − 16.7658i − 0.633236i −0.948553 0.316618i \(-0.897453\pi\)
0.948553 0.316618i \(-0.102547\pi\)
\(702\) 0 0
\(703\) −0.395472 −0.0149155
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) − 15.0641i − 0.566542i
\(708\) 0 0
\(709\) 21.8389i 0.820177i 0.912046 + 0.410088i \(0.134502\pi\)
−0.912046 + 0.410088i \(0.865498\pi\)
\(710\) 0 0
\(711\) −8.93557 −0.335110
\(712\) 0 0
\(713\) 26.9767 1.01029
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) − 2.42988i − 0.0907456i
\(718\) 0 0
\(719\) −28.2838 −1.05481 −0.527403 0.849615i \(-0.676834\pi\)
−0.527403 + 0.849615i \(0.676834\pi\)
\(720\) 0 0
\(721\) −13.6203 −0.507245
\(722\) 0 0
\(723\) − 2.64599i − 0.0984055i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −18.7205 −0.694305 −0.347152 0.937809i \(-0.612851\pi\)
−0.347152 + 0.937809i \(0.612851\pi\)
\(728\) 0 0
\(729\) 24.7091 0.915150
\(730\) 0 0
\(731\) 10.4256i 0.385603i
\(732\) 0 0
\(733\) 3.61353i 0.133469i 0.997771 + 0.0667344i \(0.0212580\pi\)
−0.997771 + 0.0667344i \(0.978742\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −8.94077 −0.329338
\(738\) 0 0
\(739\) 31.3284i 1.15243i 0.817296 + 0.576217i \(0.195472\pi\)
−0.817296 + 0.576217i \(0.804528\pi\)
\(740\) 0 0
\(741\) − 0.372073i − 0.0136684i
\(742\) 0 0
\(743\) 44.8723 1.64621 0.823103 0.567892i \(-0.192241\pi\)
0.823103 + 0.567892i \(0.192241\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) − 29.2206i − 1.06913i
\(748\) 0 0
\(749\) − 33.9936i − 1.24210i
\(750\) 0 0
\(751\) −29.7771 −1.08658 −0.543292 0.839544i \(-0.682822\pi\)
−0.543292 + 0.839544i \(0.682822\pi\)
\(752\) 0 0
\(753\) 4.72489 0.172185
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) − 33.1452i − 1.20468i −0.798239 0.602341i \(-0.794235\pi\)
0.798239 0.602341i \(-0.205765\pi\)
\(758\) 0 0
\(759\) 1.17524 0.0426584
\(760\) 0 0
\(761\) −14.1986 −0.514699 −0.257350 0.966318i \(-0.582849\pi\)
−0.257350 + 0.966318i \(0.582849\pi\)
\(762\) 0 0
\(763\) 12.6767i 0.458929i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 25.4247 0.918034
\(768\) 0 0
\(769\) 5.12825 0.184930 0.0924648 0.995716i \(-0.470525\pi\)
0.0924648 + 0.995716i \(0.470525\pi\)
\(770\) 0 0
\(771\) 4.70021i 0.169274i
\(772\) 0 0
\(773\) 1.17666i 0.0423216i 0.999776 + 0.0211608i \(0.00673619\pi\)
−0.999776 + 0.0211608i \(0.993264\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) −0.247247 −0.00886992
\(778\) 0 0
\(779\) − 5.29518i − 0.189720i
\(780\) 0 0
\(781\) 11.2568i 0.402801i
\(782\) 0 0
\(783\) 9.52455 0.340380
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 0.644823i 0.0229854i 0.999934 + 0.0114927i \(0.00365833\pi\)
−0.999934 + 0.0114927i \(0.996342\pi\)
\(788\) 0 0
\(789\) − 3.10949i − 0.110701i
\(790\) 0 0
\(791\) −46.6189 −1.65758
\(792\) 0 0
\(793\) −25.2677 −0.897281
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) − 0.822745i − 0.0291431i −0.999894 0.0145716i \(-0.995362\pi\)
0.999894 0.0145716i \(-0.00463844\pi\)
\(798\) 0 0
\(799\) 13.7842 0.487649
\(800\) 0 0
\(801\) −23.7930 −0.840684
\(802\) 0 0
\(803\) − 8.50934i − 0.300288i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 3.18978 0.112285
\(808\) 0 0
\(809\) −11.5085 −0.404619 −0.202309 0.979322i \(-0.564845\pi\)
−0.202309 + 0.979322i \(0.564845\pi\)
\(810\) 0 0
\(811\) − 51.7936i − 1.81872i −0.416011 0.909360i \(-0.636572\pi\)
0.416011 0.909360i \(-0.363428\pi\)
\(812\) 0 0
\(813\) − 3.14202i − 0.110195i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −3.21592 −0.112511
\(818\) 0 0
\(819\) 16.0209i 0.559816i
\(820\) 0 0
\(821\) − 1.66017i − 0.0579403i −0.999580 0.0289702i \(-0.990777\pi\)
0.999580 0.0289702i \(-0.00922278\pi\)
\(822\) 0 0
\(823\) 33.9444 1.18323 0.591613 0.806222i \(-0.298491\pi\)
0.591613 + 0.806222i \(0.298491\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 35.2510i 1.22580i 0.790162 + 0.612898i \(0.209996\pi\)
−0.790162 + 0.612898i \(0.790004\pi\)
\(828\) 0 0
\(829\) − 36.8215i − 1.27886i −0.768847 0.639432i \(-0.779169\pi\)
0.768847 0.639432i \(-0.220831\pi\)
\(830\) 0 0
\(831\) 2.03252 0.0705073
\(832\) 0 0
\(833\) −1.35831 −0.0470627
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) − 5.11584i − 0.176829i
\(838\) 0 0
\(839\) −40.2678 −1.39020 −0.695100 0.718913i \(-0.744640\pi\)
−0.695100 + 0.718913i \(0.744640\pi\)
\(840\) 0 0
\(841\) −30.5401 −1.05311
\(842\) 0 0
\(843\) − 0.708570i − 0.0244044i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 27.9756 0.961253
\(848\) 0 0
\(849\) 5.08627 0.174560
\(850\) 0 0
\(851\) − 2.84305i − 0.0974585i
\(852\) 0 0
\(853\) 52.0753i 1.78302i 0.452997 + 0.891512i \(0.350355\pi\)
−0.452997 + 0.891512i \(0.649645\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 48.7275 1.66450 0.832250 0.554400i \(-0.187052\pi\)
0.832250 + 0.554400i \(0.187052\pi\)
\(858\) 0 0
\(859\) 34.8415i 1.18878i 0.804178 + 0.594389i \(0.202606\pi\)
−0.804178 + 0.594389i \(0.797394\pi\)
\(860\) 0 0
\(861\) − 3.31051i − 0.112822i
\(862\) 0 0
\(863\) 14.8198 0.504473 0.252237 0.967666i \(-0.418834\pi\)
0.252237 + 0.967666i \(0.418834\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 1.73736i 0.0590039i
\(868\) 0 0
\(869\) − 2.63310i − 0.0893218i
\(870\) 0 0
\(871\) −20.3491 −0.689504
\(872\) 0 0
\(873\) 36.0575 1.22036
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) − 5.24283i − 0.177038i −0.996074 0.0885189i \(-0.971787\pi\)
0.996074 0.0885189i \(-0.0282134\pi\)
\(878\) 0 0
\(879\) −4.75590 −0.160413
\(880\) 0 0
\(881\) −24.2313 −0.816374 −0.408187 0.912898i \(-0.633839\pi\)
−0.408187 + 0.912898i \(0.633839\pi\)
\(882\) 0 0
\(883\) − 40.7796i − 1.37234i −0.727439 0.686172i \(-0.759290\pi\)
0.727439 0.686172i \(-0.240710\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 4.68906 0.157443 0.0787216 0.996897i \(-0.474916\pi\)
0.0787216 + 0.996897i \(0.474916\pi\)
\(888\) 0 0
\(889\) −10.7210 −0.359570
\(890\) 0 0
\(891\) 7.50729i 0.251504i
\(892\) 0 0
\(893\) 4.25194i 0.142286i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 2.67483 0.0893100
\(898\) 0 0
\(899\) 31.9802i 1.06660i
\(900\) 0 0
\(901\) − 28.4290i − 0.947108i
\(902\) 0 0
\(903\) −2.01057 −0.0669076
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) − 3.54602i − 0.117744i −0.998266 0.0588718i \(-0.981250\pi\)
0.998266 0.0588718i \(-0.0187503\pi\)
\(908\) 0 0
\(909\) − 16.3062i − 0.540843i
\(910\) 0 0
\(911\) −24.9437 −0.826420 −0.413210 0.910636i \(-0.635593\pi\)
−0.413210 + 0.910636i \(0.635593\pi\)
\(912\) 0 0
\(913\) 8.61063 0.284970
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 46.0933i 1.52213i
\(918\) 0 0
\(919\) 4.92584 0.162488 0.0812442 0.996694i \(-0.474111\pi\)
0.0812442 + 0.996694i \(0.474111\pi\)
\(920\) 0 0
\(921\) 0.479030 0.0157846
\(922\) 0 0
\(923\) 25.6205i 0.843308i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) −14.7434 −0.484235
\(928\) 0 0
\(929\) −39.6646 −1.30135 −0.650677 0.759354i \(-0.725515\pi\)
−0.650677 + 0.759354i \(0.725515\pi\)
\(930\) 0 0
\(931\) − 0.418991i − 0.0137319i
\(932\) 0 0
\(933\) 0.0825014i 0.00270097i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 31.3308 1.02353 0.511767 0.859125i \(-0.328991\pi\)
0.511767 + 0.859125i \(0.328991\pi\)
\(938\) 0 0
\(939\) − 5.75824i − 0.187913i
\(940\) 0 0
\(941\) − 13.1179i − 0.427630i −0.976874 0.213815i \(-0.931411\pi\)
0.976874 0.213815i \(-0.0685889\pi\)
\(942\) 0 0
\(943\) 38.0671 1.23963
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) − 32.0477i − 1.04141i −0.853737 0.520705i \(-0.825669\pi\)
0.853737 0.520705i \(-0.174331\pi\)
\(948\) 0 0
\(949\) − 19.3672i − 0.628686i
\(950\) 0 0
\(951\) 3.46441 0.112341
\(952\) 0 0
\(953\) −33.0115 −1.06935 −0.534674 0.845059i \(-0.679565\pi\)
−0.534674 + 0.845059i \(0.679565\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 1.39322i 0.0450363i
\(958\) 0 0
\(959\) −18.6244 −0.601413
\(960\) 0 0
\(961\) −13.8227 −0.445894
\(962\) 0 0
\(963\) − 36.7967i − 1.18576i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −58.2596 −1.87350 −0.936751 0.349995i \(-0.886183\pi\)
−0.936751 + 0.349995i \(0.886183\pi\)
\(968\) 0 0
\(969\) 0.550666 0.0176900
\(970\) 0 0
\(971\) − 25.2784i − 0.811223i −0.914046 0.405612i \(-0.867059\pi\)
0.914046 0.405612i \(-0.132941\pi\)
\(972\) 0 0
\(973\) 36.7744i 1.17893i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −17.7917 −0.569207 −0.284604 0.958645i \(-0.591862\pi\)
−0.284604 + 0.958645i \(0.591862\pi\)
\(978\) 0 0
\(979\) − 7.01124i − 0.224080i
\(980\) 0 0
\(981\) 13.7220i 0.438111i
\(982\) 0 0
\(983\) 33.3339 1.06319 0.531594 0.846999i \(-0.321593\pi\)
0.531594 + 0.846999i \(0.321593\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 2.65828i 0.0846140i
\(988\) 0 0
\(989\) − 23.1192i − 0.735149i
\(990\) 0 0
\(991\) 21.9753 0.698069 0.349034 0.937110i \(-0.386510\pi\)
0.349034 + 0.937110i \(0.386510\pi\)
\(992\) 0 0
\(993\) −2.64896 −0.0840622
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) − 42.6450i − 1.35058i −0.737553 0.675290i \(-0.764019\pi\)
0.737553 0.675290i \(-0.235981\pi\)
\(998\) 0 0
\(999\) −0.539154 −0.0170581
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4000.2.d.c.2001.11 40
4.3 odd 2 1000.2.d.c.501.15 40
5.2 odd 4 4000.2.f.c.3249.12 20
5.3 odd 4 4000.2.f.d.3249.9 20
5.4 even 2 inner 4000.2.d.c.2001.30 40
8.3 odd 2 1000.2.d.c.501.16 yes 40
8.5 even 2 inner 4000.2.d.c.2001.12 40
20.3 even 4 1000.2.f.d.749.4 20
20.7 even 4 1000.2.f.c.749.17 20
20.19 odd 2 1000.2.d.c.501.26 yes 40
40.3 even 4 1000.2.f.c.749.18 20
40.13 odd 4 4000.2.f.c.3249.11 20
40.19 odd 2 1000.2.d.c.501.25 yes 40
40.27 even 4 1000.2.f.d.749.3 20
40.29 even 2 inner 4000.2.d.c.2001.29 40
40.37 odd 4 4000.2.f.d.3249.10 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1000.2.d.c.501.15 40 4.3 odd 2
1000.2.d.c.501.16 yes 40 8.3 odd 2
1000.2.d.c.501.25 yes 40 40.19 odd 2
1000.2.d.c.501.26 yes 40 20.19 odd 2
1000.2.f.c.749.17 20 20.7 even 4
1000.2.f.c.749.18 20 40.3 even 4
1000.2.f.d.749.3 20 40.27 even 4
1000.2.f.d.749.4 20 20.3 even 4
4000.2.d.c.2001.11 40 1.1 even 1 trivial
4000.2.d.c.2001.12 40 8.5 even 2 inner
4000.2.d.c.2001.29 40 40.29 even 2 inner
4000.2.d.c.2001.30 40 5.4 even 2 inner
4000.2.f.c.3249.11 20 40.13 odd 4
4000.2.f.c.3249.12 20 5.2 odd 4
4000.2.f.d.3249.9 20 5.3 odd 4
4000.2.f.d.3249.10 20 40.37 odd 4