Properties

Label 4000.2.d.c.2001.11
Level 40004000
Weight 22
Character 4000.2001
Analytic conductor 31.94031.940
Analytic rank 00
Dimension 4040
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4000,2,Mod(2001,4000)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4000, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4000.2001");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 4000=2553 4000 = 2^{5} \cdot 5^{3}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 4000.d (of order 22, degree 11, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 31.940160808531.9401608085
Analytic rank: 00
Dimension: 4040
Twist minimal: no (minimal twist has level 1000)
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

Embedding invariants

Embedding label 2001.11
Character χ\chi == 4000.2001
Dual form 4000.2.d.c.2001.12

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q0.207209iq3+2.73181q7+2.95706q9+0.871377iq11+1.98325iq132.93520q170.905406iq190.566054iq21+6.50896q231.23435iq27+7.71622iq29+4.14455q31+0.180557q330.436790iq37+0.410946q39+5.84841q413.55191iq434.69617q47+0.462766q49+0.608198iq51+9.68555iq530.187608q5712.8197iq59+12.7406iq61+8.07813q63+10.2605iq671.34871iq69+12.9184q719.76540q73+2.38043iq773.02177q79+8.61542q819.88164iq83+1.59887q878.04615q89+5.41785iq910.858786iq93+12.1937q97+2.57672iq99+O(q100)q-0.207209i q^{3} +2.73181 q^{7} +2.95706 q^{9} +0.871377i q^{11} +1.98325i q^{13} -2.93520 q^{17} -0.905406i q^{19} -0.566054i q^{21} +6.50896 q^{23} -1.23435i q^{27} +7.71622i q^{29} +4.14455 q^{31} +0.180557 q^{33} -0.436790i q^{37} +0.410946 q^{39} +5.84841 q^{41} -3.55191i q^{43} -4.69617 q^{47} +0.462766 q^{49} +0.608198i q^{51} +9.68555i q^{53} -0.187608 q^{57} -12.8197i q^{59} +12.7406i q^{61} +8.07813 q^{63} +10.2605i q^{67} -1.34871i q^{69} +12.9184 q^{71} -9.76540 q^{73} +2.38043i q^{77} -3.02177 q^{79} +8.61542 q^{81} -9.88164i q^{83} +1.59887 q^{87} -8.04615 q^{89} +5.41785i q^{91} -0.858786i q^{93} +12.1937 q^{97} +2.57672i q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 40q24q948q318q39+44q41+12q4996q7196q7956q8144q89+O(q100) 40 q - 24 q^{9} - 48 q^{31} - 8 q^{39} + 44 q^{41} + 12 q^{49} - 96 q^{71} - 96 q^{79} - 56 q^{81} - 44 q^{89}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/4000Z)×\left(\mathbb{Z}/4000\mathbb{Z}\right)^\times.

nn 13771377 25012501 27512751
χ(n)\chi(n) 11 1-1 11

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 0 0
33 − 0.207209i − 0.119632i −0.998209 0.0598160i 0.980949π-0.980949\pi
0.998209 0.0598160i 0.0190514π-0.0190514\pi
44 0 0
55 0 0
66 0 0
77 2.73181 1.03253 0.516263 0.856430i 0.327323π-0.327323\pi
0.516263 + 0.856430i 0.327323π0.327323\pi
88 0 0
99 2.95706 0.985688
1010 0 0
1111 0.871377i 0.262730i 0.991334 + 0.131365i 0.0419360π0.0419360\pi
−0.991334 + 0.131365i 0.958064π0.958064\pi
1212 0 0
1313 1.98325i 0.550054i 0.961437 + 0.275027i 0.0886867π0.0886867\pi
−0.961437 + 0.275027i 0.911313π0.911313\pi
1414 0 0
1515 0 0
1616 0 0
1717 −2.93520 −0.711890 −0.355945 0.934507i 0.615841π-0.615841\pi
−0.355945 + 0.934507i 0.615841π0.615841\pi
1818 0 0
1919 − 0.905406i − 0.207714i −0.994592 0.103857i 0.966882π-0.966882\pi
0.994592 0.103857i 0.0331185π-0.0331185\pi
2020 0 0
2121 − 0.566054i − 0.123523i
2222 0 0
2323 6.50896 1.35721 0.678606 0.734502i 0.262584π-0.262584\pi
0.678606 + 0.734502i 0.262584π0.262584\pi
2424 0 0
2525 0 0
2626 0 0
2727 − 1.23435i − 0.237552i
2828 0 0
2929 7.71622i 1.43287i 0.697656 + 0.716433i 0.254227π0.254227\pi
−0.697656 + 0.716433i 0.745773π0.745773\pi
3030 0 0
3131 4.14455 0.744383 0.372191 0.928156i 0.378606π-0.378606\pi
0.372191 + 0.928156i 0.378606π0.378606\pi
3232 0 0
3333 0.180557 0.0314309
3434 0 0
3535 0 0
3636 0 0
3737 − 0.436790i − 0.0718078i −0.999355 0.0359039i 0.988569π-0.988569\pi
0.999355 0.0359039i 0.0114310π-0.0114310\pi
3838 0 0
3939 0.410946 0.0658040
4040 0 0
4141 5.84841 0.913368 0.456684 0.889629i 0.349037π-0.349037\pi
0.456684 + 0.889629i 0.349037π0.349037\pi
4242 0 0
4343 − 3.55191i − 0.541661i −0.962627 0.270830i 0.912702π-0.912702\pi
0.962627 0.270830i 0.0872983π-0.0872983\pi
4444 0 0
4545 0 0
4646 0 0
4747 −4.69617 −0.685006 −0.342503 0.939517i 0.611275π-0.611275\pi
−0.342503 + 0.939517i 0.611275π0.611275\pi
4848 0 0
4949 0.462766 0.0661095
5050 0 0
5151 0.608198i 0.0851648i
5252 0 0
5353 9.68555i 1.33041i 0.746660 + 0.665206i 0.231656π0.231656\pi
−0.746660 + 0.665206i 0.768344π0.768344\pi
5454 0 0
5555 0 0
5656 0 0
5757 −0.187608 −0.0248493
5858 0 0
5959 − 12.8197i − 1.66899i −0.551016 0.834495i 0.685760π-0.685760\pi
0.551016 0.834495i 0.314240π-0.314240\pi
6060 0 0
6161 12.7406i 1.63126i 0.578573 + 0.815630i 0.303610π0.303610\pi
−0.578573 + 0.815630i 0.696390π0.696390\pi
6262 0 0
6363 8.07813 1.01775
6464 0 0
6565 0 0
6666 0 0
6767 10.2605i 1.25352i 0.779212 + 0.626760i 0.215619π0.215619\pi
−0.779212 + 0.626760i 0.784381π0.784381\pi
6868 0 0
6969 − 1.34871i − 0.162366i
7070 0 0
7171 12.9184 1.53314 0.766569 0.642162i 0.221962π-0.221962\pi
0.766569 + 0.642162i 0.221962π0.221962\pi
7272 0 0
7373 −9.76540 −1.14295 −0.571477 0.820618i 0.693629π-0.693629\pi
−0.571477 + 0.820618i 0.693629π0.693629\pi
7474 0 0
7575 0 0
7676 0 0
7777 2.38043i 0.271276i
7878 0 0
7979 −3.02177 −0.339976 −0.169988 0.985446i 0.554373π-0.554373\pi
−0.169988 + 0.985446i 0.554373π0.554373\pi
8080 0 0
8181 8.61542 0.957269
8282 0 0
8383 − 9.88164i − 1.08465i −0.840169 0.542325i 0.817544π-0.817544\pi
0.840169 0.542325i 0.182456π-0.182456\pi
8484 0 0
8585 0 0
8686 0 0
8787 1.59887 0.171417
8888 0 0
8989 −8.04615 −0.852891 −0.426445 0.904513i 0.640234π-0.640234\pi
−0.426445 + 0.904513i 0.640234π0.640234\pi
9090 0 0
9191 5.41785i 0.567945i
9292 0 0
9393 − 0.858786i − 0.0890519i
9494 0 0
9595 0 0
9696 0 0
9797 12.1937 1.23808 0.619041 0.785359i 0.287522π-0.287522\pi
0.619041 + 0.785359i 0.287522π0.287522\pi
9898 0 0
9999 2.57672i 0.258970i
100100 0 0
101101 − 5.51432i − 0.548696i −0.961631 0.274348i 0.911538π-0.911538\pi
0.961631 0.274348i 0.0884619π-0.0884619\pi
102102 0 0
103103 −4.98581 −0.491266 −0.245633 0.969363i 0.578996π-0.578996\pi
−0.245633 + 0.969363i 0.578996π0.578996\pi
104104 0 0
105105 0 0
106106 0 0
107107 − 12.4436i − 1.20297i −0.798883 0.601486i 0.794575π-0.794575\pi
0.798883 0.601486i 0.205425π-0.205425\pi
108108 0 0
109109 4.64042i 0.444472i 0.974993 + 0.222236i 0.0713355π0.0713355\pi
−0.974993 + 0.222236i 0.928664π0.928664\pi
110110 0 0
111111 −0.0905066 −0.00859051
112112 0 0
113113 −17.0652 −1.60536 −0.802680 0.596410i 0.796593π-0.796593\pi
−0.802680 + 0.596410i 0.796593π0.796593\pi
114114 0 0
115115 0 0
116116 0 0
117117 5.86459i 0.542181i
118118 0 0
119119 −8.01840 −0.735045
120120 0 0
121121 10.2407 0.930973
122122 0 0
123123 − 1.21184i − 0.109268i
124124 0 0
125125 0 0
126126 0 0
127127 −3.92450 −0.348243 −0.174121 0.984724i 0.555709π-0.555709\pi
−0.174121 + 0.984724i 0.555709π0.555709\pi
128128 0 0
129129 −0.735986 −0.0647999
130130 0 0
131131 16.8728i 1.47419i 0.675792 + 0.737093i 0.263802π0.263802\pi
−0.675792 + 0.737093i 0.736198π0.736198\pi
132132 0 0
133133 − 2.47339i − 0.214470i
134134 0 0
135135 0 0
136136 0 0
137137 −6.81761 −0.582468 −0.291234 0.956652i 0.594066π-0.594066\pi
−0.291234 + 0.956652i 0.594066π0.594066\pi
138138 0 0
139139 13.4616i 1.14180i 0.821021 + 0.570898i 0.193405π0.193405\pi
−0.821021 + 0.570898i 0.806595π0.806595\pi
140140 0 0
141141 0.973086i 0.0819486i
142142 0 0
143143 −1.72816 −0.144516
144144 0 0
145145 0 0
146146 0 0
147147 − 0.0958892i − 0.00790880i
148148 0 0
149149 − 19.6182i − 1.60719i −0.595179 0.803593i 0.702919π-0.702919\pi
0.595179 0.803593i 0.297081π-0.297081\pi
150150 0 0
151151 21.8652 1.77937 0.889684 0.456577i 0.150925π-0.150925\pi
0.889684 + 0.456577i 0.150925π0.150925\pi
152152 0 0
153153 −8.67957 −0.701702
154154 0 0
155155 0 0
156156 0 0
157157 − 5.34144i − 0.426293i −0.977020 0.213147i 0.931629π-0.931629\pi
0.977020 0.213147i 0.0683712π-0.0683712\pi
158158 0 0
159159 2.00693 0.159160
160160 0 0
161161 17.7812 1.40136
162162 0 0
163163 − 17.4676i − 1.36817i −0.729401 0.684086i 0.760201π-0.760201\pi
0.729401 0.684086i 0.239799π-0.239799\pi
164164 0 0
165165 0 0
166166 0 0
167167 −11.5956 −0.897293 −0.448647 0.893709i 0.648094π-0.648094\pi
−0.448647 + 0.893709i 0.648094π0.648094\pi
168168 0 0
169169 9.06673 0.697441
170170 0 0
171171 − 2.67734i − 0.204742i
172172 0 0
173173 9.07537i 0.689988i 0.938605 + 0.344994i 0.112119π0.112119\pi
−0.938605 + 0.344994i 0.887881π0.887881\pi
174174 0 0
175175 0 0
176176 0 0
177177 −2.65636 −0.199664
178178 0 0
179179 10.0236i 0.749200i 0.927186 + 0.374600i 0.122220π0.122220\pi
−0.927186 + 0.374600i 0.877780π0.877780\pi
180180 0 0
181181 14.2992i 1.06285i 0.847106 + 0.531424i 0.178343π0.178343\pi
−0.847106 + 0.531424i 0.821657π0.821657\pi
182182 0 0
183183 2.63995 0.195151
184184 0 0
185185 0 0
186186 0 0
187187 − 2.55767i − 0.187035i
188188 0 0
189189 − 3.37202i − 0.245278i
190190 0 0
191191 13.4414 0.972588 0.486294 0.873795i 0.338348π-0.338348\pi
0.486294 + 0.873795i 0.338348π0.338348\pi
192192 0 0
193193 20.0219 1.44121 0.720606 0.693345i 0.243864π-0.243864\pi
0.720606 + 0.693345i 0.243864π0.243864\pi
194194 0 0
195195 0 0
196196 0 0
197197 − 13.4963i − 0.961568i −0.876839 0.480784i 0.840352π-0.840352\pi
0.876839 0.480784i 0.159648π-0.159648\pi
198198 0 0
199199 14.1065 0.999981 0.499990 0.866031i 0.333337π-0.333337\pi
0.499990 + 0.866031i 0.333337π0.333337\pi
200200 0 0
201201 2.12607 0.149961
202202 0 0
203203 21.0792i 1.47947i
204204 0 0
205205 0 0
206206 0 0
207207 19.2474 1.33779
208208 0 0
209209 0.788950 0.0545728
210210 0 0
211211 − 13.1355i − 0.904288i −0.891945 0.452144i 0.850659π-0.850659\pi
0.891945 0.452144i 0.149341π-0.149341\pi
212212 0 0
213213 − 2.67681i − 0.183412i
214214 0 0
215215 0 0
216216 0 0
217217 11.3221 0.768594
218218 0 0
219219 2.02347i 0.136734i
220220 0 0
221221 − 5.82122i − 0.391578i
222222 0 0
223223 −0.718852 −0.0481379 −0.0240689 0.999710i 0.507662π-0.507662\pi
−0.0240689 + 0.999710i 0.507662π0.507662\pi
224224 0 0
225225 0 0
226226 0 0
227227 12.0713i 0.801198i 0.916254 + 0.400599i 0.131198π0.131198\pi
−0.916254 + 0.400599i 0.868802π0.868802\pi
228228 0 0
229229 − 10.3408i − 0.683342i −0.939820 0.341671i 0.889007π-0.889007\pi
0.939820 0.341671i 0.110993π-0.110993\pi
230230 0 0
231231 0.493246 0.0324532
232232 0 0
233233 4.03296 0.264208 0.132104 0.991236i 0.457827π-0.457827\pi
0.132104 + 0.991236i 0.457827π0.457827\pi
234234 0 0
235235 0 0
236236 0 0
237237 0.626136i 0.0406719i
238238 0 0
239239 11.7267 0.758540 0.379270 0.925286i 0.376175π-0.376175\pi
0.379270 + 0.925286i 0.376175π0.376175\pi
240240 0 0
241241 12.7697 0.822569 0.411284 0.911507i 0.365080π-0.365080\pi
0.411284 + 0.911507i 0.365080π0.365080\pi
242242 0 0
243243 − 5.48825i − 0.352072i
244244 0 0
245245 0 0
246246 0 0
247247 1.79564 0.114254
248248 0 0
249249 −2.04756 −0.129759
250250 0 0
251251 22.8026i 1.43929i 0.694344 + 0.719644i 0.255695π0.255695\pi
−0.694344 + 0.719644i 0.744305π0.744305\pi
252252 0 0
253253 5.67176i 0.356581i
254254 0 0
255255 0 0
256256 0 0
257257 −22.6835 −1.41496 −0.707478 0.706736i 0.750167π-0.750167\pi
−0.707478 + 0.706736i 0.750167π0.750167\pi
258258 0 0
259259 − 1.19323i − 0.0741435i
260260 0 0
261261 22.8174i 1.41236i
262262 0 0
263263 15.0066 0.925346 0.462673 0.886529i 0.346890π-0.346890\pi
0.462673 + 0.886529i 0.346890π0.346890\pi
264264 0 0
265265 0 0
266266 0 0
267267 1.66723i 0.102033i
268268 0 0
269269 15.3940i 0.938591i 0.883041 + 0.469295i 0.155492π0.155492\pi
−0.883041 + 0.469295i 0.844508π0.844508\pi
270270 0 0
271271 15.1636 0.921121 0.460561 0.887628i 0.347648π-0.347648\pi
0.460561 + 0.887628i 0.347648π0.347648\pi
272272 0 0
273273 1.12262 0.0679443
274274 0 0
275275 0 0
276276 0 0
277277 9.80905i 0.589369i 0.955595 + 0.294684i 0.0952145π0.0952145\pi
−0.955595 + 0.294684i 0.904785π0.904785\pi
278278 0 0
279279 12.2557 0.733729
280280 0 0
281281 3.41960 0.203996 0.101998 0.994785i 0.467476π-0.467476\pi
0.101998 + 0.994785i 0.467476π0.467476\pi
282282 0 0
283283 24.5466i 1.45914i 0.683904 + 0.729572i 0.260281π0.260281\pi
−0.683904 + 0.729572i 0.739719π0.739719\pi
284284 0 0
285285 0 0
286286 0 0
287287 15.9767 0.943076
288288 0 0
289289 −8.38461 −0.493212
290290 0 0
291291 − 2.52664i − 0.148114i
292292 0 0
293293 − 22.9522i − 1.34088i −0.741962 0.670442i 0.766104π-0.766104\pi
0.741962 0.670442i 0.233896π-0.233896\pi
294294 0 0
295295 0 0
296296 0 0
297297 1.07559 0.0624120
298298 0 0
299299 12.9089i 0.746540i
300300 0 0
301301 − 9.70312i − 0.559279i
302302 0 0
303303 −1.14261 −0.0656415
304304 0 0
305305 0 0
306306 0 0
307307 2.31183i 0.131943i 0.997822 + 0.0659714i 0.0210146π0.0210146\pi
−0.997822 + 0.0659714i 0.978985π0.978985\pi
308308 0 0
309309 1.03310i 0.0587711i
310310 0 0
311311 −0.398156 −0.0225774 −0.0112887 0.999936i 0.503593π-0.503593\pi
−0.0112887 + 0.999936i 0.503593π0.503593\pi
312312 0 0
313313 27.7896 1.57076 0.785380 0.619013i 0.212467π-0.212467\pi
0.785380 + 0.619013i 0.212467π0.212467\pi
314314 0 0
315315 0 0
316316 0 0
317317 16.7194i 0.939056i 0.882918 + 0.469528i 0.155576π0.155576\pi
−0.882918 + 0.469528i 0.844424π0.844424\pi
318318 0 0
319319 −6.72374 −0.376457
320320 0 0
321321 −2.57843 −0.143914
322322 0 0
323323 2.65755i 0.147870i
324324 0 0
325325 0 0
326326 0 0
327327 0.961535 0.0531730
328328 0 0
329329 −12.8290 −0.707286
330330 0 0
331331 − 12.7840i − 0.702673i −0.936249 0.351337i 0.885727π-0.885727\pi
0.936249 0.351337i 0.114273π-0.114273\pi
332332 0 0
333333 − 1.29162i − 0.0707801i
334334 0 0
335335 0 0
336336 0 0
337337 4.73648 0.258012 0.129006 0.991644i 0.458821π-0.458821\pi
0.129006 + 0.991644i 0.458821π0.458821\pi
338338 0 0
339339 3.53606i 0.192052i
340340 0 0
341341 3.61147i 0.195572i
342342 0 0
343343 −17.8585 −0.964266
344344 0 0
345345 0 0
346346 0 0
347347 − 25.7080i − 1.38008i −0.723773 0.690038i 0.757594π-0.757594\pi
0.723773 0.690038i 0.242406π-0.242406\pi
348348 0 0
349349 7.18541i 0.384626i 0.981334 + 0.192313i 0.0615989π0.0615989\pi
−0.981334 + 0.192313i 0.938401π0.938401\pi
350350 0 0
351351 2.44803 0.130666
352352 0 0
353353 5.97661 0.318103 0.159052 0.987270i 0.449156π-0.449156\pi
0.159052 + 0.987270i 0.449156π0.449156\pi
354354 0 0
355355 0 0
356356 0 0
357357 1.66148i 0.0879349i
358358 0 0
359359 −30.7769 −1.62434 −0.812171 0.583420i 0.801714π-0.801714\pi
−0.812171 + 0.583420i 0.801714π0.801714\pi
360360 0 0
361361 18.1802 0.956855
362362 0 0
363363 − 2.12196i − 0.111374i
364364 0 0
365365 0 0
366366 0 0
367367 −22.3956 −1.16904 −0.584520 0.811379i 0.698717π-0.698717\pi
−0.584520 + 0.811379i 0.698717π0.698717\pi
368368 0 0
369369 17.2941 0.900296
370370 0 0
371371 26.4590i 1.37368i
372372 0 0
373373 16.1839i 0.837973i 0.907992 + 0.418986i 0.137615π0.137615\pi
−0.907992 + 0.418986i 0.862385π0.862385\pi
374374 0 0
375375 0 0
376376 0 0
377377 −15.3032 −0.788153
378378 0 0
379379 − 10.9692i − 0.563449i −0.959495 0.281724i 0.909094π-0.909094\pi
0.959495 0.281724i 0.0909063π-0.0909063\pi
380380 0 0
381381 0.813190i 0.0416610i
382382 0 0
383383 −18.3816 −0.939256 −0.469628 0.882864i 0.655612π-0.655612\pi
−0.469628 + 0.882864i 0.655612π0.655612\pi
384384 0 0
385385 0 0
386386 0 0
387387 − 10.5032i − 0.533909i
388388 0 0
389389 − 30.2480i − 1.53364i −0.641865 0.766818i 0.721839π-0.721839\pi
0.641865 0.766818i 0.278161π-0.278161\pi
390390 0 0
391391 −19.1051 −0.966186
392392 0 0
393393 3.49619 0.176360
394394 0 0
395395 0 0
396396 0 0
397397 − 39.1270i − 1.96373i −0.189582 0.981865i 0.560713π-0.560713\pi
0.189582 0.981865i 0.439287π-0.439287\pi
398398 0 0
399399 −0.512508 −0.0256575
400400 0 0
401401 −10.2607 −0.512397 −0.256198 0.966624i 0.582470π-0.582470\pi
−0.256198 + 0.966624i 0.582470π0.582470\pi
402402 0 0
403403 8.21966i 0.409451i
404404 0 0
405405 0 0
406406 0 0
407407 0.380609 0.0188661
408408 0 0
409409 10.4383 0.516140 0.258070 0.966126i 0.416913π-0.416913\pi
0.258070 + 0.966126i 0.416913π0.416913\pi
410410 0 0
411411 1.41267i 0.0696818i
412412 0 0
413413 − 35.0211i − 1.72327i
414414 0 0
415415 0 0
416416 0 0
417417 2.78935 0.136595
418418 0 0
419419 − 36.6607i − 1.79099i −0.445067 0.895497i 0.646820π-0.646820\pi
0.445067 0.895497i 0.353180π-0.353180\pi
420420 0 0
421421 − 10.4070i − 0.507207i −0.967308 0.253603i 0.918384π-0.918384\pi
0.967308 0.253603i 0.0816158π-0.0816158\pi
422422 0 0
423423 −13.8869 −0.675202
424424 0 0
425425 0 0
426426 0 0
427427 34.8047i 1.68432i
428428 0 0
429429 0.358089i 0.0172887i
430430 0 0
431431 10.3866 0.500306 0.250153 0.968206i 0.419519π-0.419519\pi
0.250153 + 0.968206i 0.419519π0.419519\pi
432432 0 0
433433 7.01402 0.337072 0.168536 0.985695i 0.446096π-0.446096\pi
0.168536 + 0.985695i 0.446096π0.446096\pi
434434 0 0
435435 0 0
436436 0 0
437437 − 5.89325i − 0.281912i
438438 0 0
439439 3.40264 0.162399 0.0811995 0.996698i 0.474125π-0.474125\pi
0.0811995 + 0.996698i 0.474125π0.474125\pi
440440 0 0
441441 1.36843 0.0651633
442442 0 0
443443 14.1103i 0.670399i 0.942147 + 0.335199i 0.108804π0.108804\pi
−0.942147 + 0.335199i 0.891196π0.891196\pi
444444 0 0
445445 0 0
446446 0 0
447447 −4.06506 −0.192271
448448 0 0
449449 −18.9957 −0.896463 −0.448231 0.893918i 0.647946π-0.647946\pi
−0.448231 + 0.893918i 0.647946π0.647946\pi
450450 0 0
451451 5.09617i 0.239969i
452452 0 0
453453 − 4.53066i − 0.212869i
454454 0 0
455455 0 0
456456 0 0
457457 28.3050 1.32405 0.662027 0.749480i 0.269697π-0.269697\pi
0.662027 + 0.749480i 0.269697π0.269697\pi
458458 0 0
459459 3.62308i 0.169111i
460460 0 0
461461 − 11.2576i − 0.524320i −0.965024 0.262160i 0.915565π-0.915565\pi
0.965024 0.262160i 0.0844348π-0.0844348\pi
462462 0 0
463463 1.11665 0.0518950 0.0259475 0.999663i 0.491740π-0.491740\pi
0.0259475 + 0.999663i 0.491740π0.491740\pi
464464 0 0
465465 0 0
466466 0 0
467467 − 1.34496i − 0.0622374i −0.999516 0.0311187i 0.990093π-0.990093\pi
0.999516 0.0311187i 0.00990699π-0.00990699\pi
468468 0 0
469469 28.0297i 1.29429i
470470 0 0
471471 −1.10679 −0.0509983
472472 0 0
473473 3.09505 0.142311
474474 0 0
475475 0 0
476476 0 0
477477 28.6408i 1.31137i
478478 0 0
479479 −26.2181 −1.19794 −0.598968 0.800773i 0.704422π-0.704422\pi
−0.598968 + 0.800773i 0.704422π0.704422\pi
480480 0 0
481481 0.866263 0.0394982
482482 0 0
483483 − 3.68442i − 0.167647i
484484 0 0
485485 0 0
486486 0 0
487487 −12.2782 −0.556378 −0.278189 0.960526i 0.589734π-0.589734\pi
−0.278189 + 0.960526i 0.589734π0.589734\pi
488488 0 0
489489 −3.61945 −0.163677
490490 0 0
491491 − 32.3053i − 1.45792i −0.684558 0.728959i 0.740005π-0.740005\pi
0.684558 0.728959i 0.259995π-0.259995\pi
492492 0 0
493493 − 22.6486i − 1.02004i
494494 0 0
495495 0 0
496496 0 0
497497 35.2907 1.58300
498498 0 0
499499 − 6.14059i − 0.274890i −0.990509 0.137445i 0.956111π-0.956111\pi
0.990509 0.137445i 0.0438891π-0.0438891\pi
500500 0 0
501501 2.40270i 0.107345i
502502 0 0
503503 −26.1226 −1.16475 −0.582375 0.812921i 0.697876π-0.697876\pi
−0.582375 + 0.812921i 0.697876π0.697876\pi
504504 0 0
505505 0 0
506506 0 0
507507 − 1.87870i − 0.0834362i
508508 0 0
509509 8.02196i 0.355567i 0.984070 + 0.177784i 0.0568927π0.0568927\pi
−0.984070 + 0.177784i 0.943107π0.943107\pi
510510 0 0
511511 −26.6772 −1.18013
512512 0 0
513513 −1.11759 −0.0493429
514514 0 0
515515 0 0
516516 0 0
517517 − 4.09213i − 0.179972i
518518 0 0
519519 1.88049 0.0825446
520520 0 0
521521 −37.3348 −1.63567 −0.817833 0.575456i 0.804825π-0.804825\pi
−0.817833 + 0.575456i 0.804825π0.804825\pi
522522 0 0
523523 41.8753i 1.83108i 0.402230 + 0.915539i 0.368235π0.368235\pi
−0.402230 + 0.915539i 0.631765π0.631765\pi
524524 0 0
525525 0 0
526526 0 0
527527 −12.1651 −0.529919
528528 0 0
529529 19.3666 0.842025
530530 0 0
531531 − 37.9088i − 1.64510i
532532 0 0
533533 11.5988i 0.502401i
534534 0 0
535535 0 0
536536 0 0
537537 2.07698 0.0896283
538538 0 0
539539 0.403244i 0.0173690i
540540 0 0
541541 33.1542i 1.42541i 0.701464 + 0.712705i 0.252530π0.252530\pi
−0.701464 + 0.712705i 0.747470π0.747470\pi
542542 0 0
543543 2.96291 0.127151
544544 0 0
545545 0 0
546546 0 0
547547 − 21.2749i − 0.909650i −0.890581 0.454825i 0.849702π-0.849702\pi
0.890581 0.454825i 0.150298π-0.150298\pi
548548 0 0
549549 37.6746i 1.60791i
550550 0 0
551551 6.98631 0.297627
552552 0 0
553553 −8.25489 −0.351034
554554 0 0
555555 0 0
556556 0 0
557557 1.73333i 0.0734437i 0.999326 + 0.0367219i 0.0116916π0.0116916\pi
−0.999326 + 0.0367219i 0.988308π0.988308\pi
558558 0 0
559559 7.04431 0.297943
560560 0 0
561561 −0.529970 −0.0223754
562562 0 0
563563 − 47.0184i − 1.98159i −0.135369 0.990795i 0.543222π-0.543222\pi
0.135369 0.990795i 0.456778π-0.456778\pi
564564 0 0
565565 0 0
566566 0 0
567567 23.5357 0.988405
568568 0 0
569569 −0.301785 −0.0126515 −0.00632573 0.999980i 0.502014π-0.502014\pi
−0.00632573 + 0.999980i 0.502014π0.502014\pi
570570 0 0
571571 30.2200i 1.26467i 0.774697 + 0.632333i 0.217903π0.217903\pi
−0.774697 + 0.632333i 0.782097π0.782097\pi
572572 0 0
573573 − 2.78518i − 0.116353i
574574 0 0
575575 0 0
576576 0 0
577577 −4.58089 −0.190705 −0.0953524 0.995444i 0.530398π-0.530398\pi
−0.0953524 + 0.995444i 0.530398π0.530398\pi
578578 0 0
579579 − 4.14872i − 0.172415i
580580 0 0
581581 − 26.9947i − 1.11993i
582582 0 0
583583 −8.43976 −0.349539
584584 0 0
585585 0 0
586586 0 0
587587 0.387716i 0.0160028i 0.999968 + 0.00800138i 0.00254695π0.00254695\pi
−0.999968 + 0.00800138i 0.997453π0.997453\pi
588588 0 0
589589 − 3.75250i − 0.154619i
590590 0 0
591591 −2.79654 −0.115034
592592 0 0
593593 14.5864 0.598994 0.299497 0.954097i 0.403181π-0.403181\pi
0.299497 + 0.954097i 0.403181π0.403181\pi
594594 0 0
595595 0 0
596596 0 0
597597 − 2.92298i − 0.119630i
598598 0 0
599599 −5.66881 −0.231621 −0.115811 0.993271i 0.536947π-0.536947\pi
−0.115811 + 0.993271i 0.536947π0.536947\pi
600600 0 0
601601 −29.8385 −1.21714 −0.608569 0.793501i 0.708256π-0.708256\pi
−0.608569 + 0.793501i 0.708256π0.708256\pi
602602 0 0
603603 30.3410i 1.23558i
604604 0 0
605605 0 0
606606 0 0
607607 −19.4752 −0.790474 −0.395237 0.918579i 0.629338π-0.629338\pi
−0.395237 + 0.918579i 0.629338π0.629338\pi
608608 0 0
609609 4.36779 0.176992
610610 0 0
611611 − 9.31365i − 0.376790i
612612 0 0
613613 − 39.6234i − 1.60037i −0.599752 0.800186i 0.704734π-0.704734\pi
0.599752 0.800186i 0.295266π-0.295266\pi
614614 0 0
615615 0 0
616616 0 0
617617 −32.0519 −1.29036 −0.645180 0.764031i 0.723218π-0.723218\pi
−0.645180 + 0.764031i 0.723218π0.723218\pi
618618 0 0
619619 − 17.9597i − 0.721861i −0.932593 0.360930i 0.882459π-0.882459\pi
0.932593 0.360930i 0.117541π-0.117541\pi
620620 0 0
621621 − 8.03437i − 0.322408i
622622 0 0
623623 −21.9805 −0.880632
624624 0 0
625625 0 0
626626 0 0
627627 − 0.163477i − 0.00652865i
628628 0 0
629629 1.28207i 0.0511193i
630630 0 0
631631 −28.0265 −1.11572 −0.557858 0.829936i 0.688377π-0.688377\pi
−0.557858 + 0.829936i 0.688377π0.688377\pi
632632 0 0
633633 −2.72180 −0.108182
634634 0 0
635635 0 0
636636 0 0
637637 0.917780i 0.0363638i
638638 0 0
639639 38.2007 1.51120
640640 0 0
641641 −11.2647 −0.444929 −0.222465 0.974941i 0.571410π-0.571410\pi
−0.222465 + 0.974941i 0.571410π0.571410\pi
642642 0 0
643643 − 48.2471i − 1.90268i −0.308141 0.951341i 0.599707π-0.599707\pi
0.308141 0.951341i 0.400293π-0.400293\pi
644644 0 0
645645 0 0
646646 0 0
647647 31.8798 1.25333 0.626663 0.779291i 0.284420π-0.284420\pi
0.626663 + 0.779291i 0.284420π0.284420\pi
648648 0 0
649649 11.1708 0.438494
650650 0 0
651651 − 2.34604i − 0.0919484i
652652 0 0
653653 36.3662i 1.42312i 0.702627 + 0.711559i 0.252010π0.252010\pi
−0.702627 + 0.711559i 0.747990π0.747990\pi
654654 0 0
655655 0 0
656656 0 0
657657 −28.8769 −1.12660
658658 0 0
659659 − 5.48884i − 0.213815i −0.994269 0.106907i 0.965905π-0.965905\pi
0.994269 0.106907i 0.0340949π-0.0340949\pi
660660 0 0
661661 − 29.5221i − 1.14828i −0.818759 0.574138i 0.805337π-0.805337\pi
0.818759 0.574138i 0.194663π-0.194663\pi
662662 0 0
663663 −1.20621 −0.0468452
664664 0 0
665665 0 0
666666 0 0
667667 50.2246i 1.94470i
668668 0 0
669669 0.148952i 0.00575883i
670670 0 0
671671 −11.1018 −0.428581
672672 0 0
673673 −41.5796 −1.60278 −0.801389 0.598144i 0.795905π-0.795905\pi
−0.801389 + 0.598144i 0.795905π0.795905\pi
674674 0 0
675675 0 0
676676 0 0
677677 35.3724i 1.35947i 0.733457 + 0.679736i 0.237906π0.237906\pi
−0.733457 + 0.679736i 0.762094π0.762094\pi
678678 0 0
679679 33.3108 1.27835
680680 0 0
681681 2.50127 0.0958488
682682 0 0
683683 22.5077i 0.861233i 0.902535 + 0.430617i 0.141704π0.141704\pi
−0.902535 + 0.430617i 0.858296π0.858296\pi
684684 0 0
685685 0 0
686686 0 0
687687 −2.14271 −0.0817496
688688 0 0
689689 −19.2088 −0.731798
690690 0 0
691691 − 0.855355i − 0.0325392i −0.999868 0.0162696i 0.994821π-0.994821\pi
0.999868 0.0162696i 0.00517901π-0.00517901\pi
692692 0 0
693693 7.03910i 0.267393i
694694 0 0
695695 0 0
696696 0 0
697697 −17.1662 −0.650218
698698 0 0
699699 − 0.835664i − 0.0316077i
700700 0 0
701701 − 16.7658i − 0.633236i −0.948553 0.316618i 0.897453π-0.897453\pi
0.948553 0.316618i 0.102547π-0.102547\pi
702702 0 0
703703 −0.395472 −0.0149155
704704 0 0
705705 0 0
706706 0 0
707707 − 15.0641i − 0.566542i
708708 0 0
709709 21.8389i 0.820177i 0.912046 + 0.410088i 0.134502π0.134502\pi
−0.912046 + 0.410088i 0.865498π0.865498\pi
710710 0 0
711711 −8.93557 −0.335110
712712 0 0
713713 26.9767 1.01029
714714 0 0
715715 0 0
716716 0 0
717717 − 2.42988i − 0.0907456i
718718 0 0
719719 −28.2838 −1.05481 −0.527403 0.849615i 0.676834π-0.676834\pi
−0.527403 + 0.849615i 0.676834π0.676834\pi
720720 0 0
721721 −13.6203 −0.507245
722722 0 0
723723 − 2.64599i − 0.0984055i
724724 0 0
725725 0 0
726726 0 0
727727 −18.7205 −0.694305 −0.347152 0.937809i 0.612851π-0.612851\pi
−0.347152 + 0.937809i 0.612851π0.612851\pi
728728 0 0
729729 24.7091 0.915150
730730 0 0
731731 10.4256i 0.385603i
732732 0 0
733733 3.61353i 0.133469i 0.997771 + 0.0667344i 0.0212580π0.0212580\pi
−0.997771 + 0.0667344i 0.978742π0.978742\pi
734734 0 0
735735 0 0
736736 0 0
737737 −8.94077 −0.329338
738738 0 0
739739 31.3284i 1.15243i 0.817296 + 0.576217i 0.195472π0.195472\pi
−0.817296 + 0.576217i 0.804528π0.804528\pi
740740 0 0
741741 − 0.372073i − 0.0136684i
742742 0 0
743743 44.8723 1.64621 0.823103 0.567892i 0.192241π-0.192241\pi
0.823103 + 0.567892i 0.192241π0.192241\pi
744744 0 0
745745 0 0
746746 0 0
747747 − 29.2206i − 1.06913i
748748 0 0
749749 − 33.9936i − 1.24210i
750750 0 0
751751 −29.7771 −1.08658 −0.543292 0.839544i 0.682822π-0.682822\pi
−0.543292 + 0.839544i 0.682822π0.682822\pi
752752 0 0
753753 4.72489 0.172185
754754 0 0
755755 0 0
756756 0 0
757757 − 33.1452i − 1.20468i −0.798239 0.602341i 0.794235π-0.794235\pi
0.798239 0.602341i 0.205765π-0.205765\pi
758758 0 0
759759 1.17524 0.0426584
760760 0 0
761761 −14.1986 −0.514699 −0.257350 0.966318i 0.582849π-0.582849\pi
−0.257350 + 0.966318i 0.582849π0.582849\pi
762762 0 0
763763 12.6767i 0.458929i
764764 0 0
765765 0 0
766766 0 0
767767 25.4247 0.918034
768768 0 0
769769 5.12825 0.184930 0.0924648 0.995716i 0.470525π-0.470525\pi
0.0924648 + 0.995716i 0.470525π0.470525\pi
770770 0 0
771771 4.70021i 0.169274i
772772 0 0
773773 1.17666i 0.0423216i 0.999776 + 0.0211608i 0.00673619π0.00673619\pi
−0.999776 + 0.0211608i 0.993264π0.993264\pi
774774 0 0
775775 0 0
776776 0 0
777777 −0.247247 −0.00886992
778778 0 0
779779 − 5.29518i − 0.189720i
780780 0 0
781781 11.2568i 0.402801i
782782 0 0
783783 9.52455 0.340380
784784 0 0
785785 0 0
786786 0 0
787787 0.644823i 0.0229854i 0.999934 + 0.0114927i 0.00365833π0.00365833\pi
−0.999934 + 0.0114927i 0.996342π0.996342\pi
788788 0 0
789789 − 3.10949i − 0.110701i
790790 0 0
791791 −46.6189 −1.65758
792792 0 0
793793 −25.2677 −0.897281
794794 0 0
795795 0 0
796796 0 0
797797 − 0.822745i − 0.0291431i −0.999894 0.0145716i 0.995362π-0.995362\pi
0.999894 0.0145716i 0.00463844π-0.00463844\pi
798798 0 0
799799 13.7842 0.487649
800800 0 0
801801 −23.7930 −0.840684
802802 0 0
803803 − 8.50934i − 0.300288i
804804 0 0
805805 0 0
806806 0 0
807807 3.18978 0.112285
808808 0 0
809809 −11.5085 −0.404619 −0.202309 0.979322i 0.564845π-0.564845\pi
−0.202309 + 0.979322i 0.564845π0.564845\pi
810810 0 0
811811 − 51.7936i − 1.81872i −0.416011 0.909360i 0.636572π-0.636572\pi
0.416011 0.909360i 0.363428π-0.363428\pi
812812 0 0
813813 − 3.14202i − 0.110195i
814814 0 0
815815 0 0
816816 0 0
817817 −3.21592 −0.112511
818818 0 0
819819 16.0209i 0.559816i
820820 0 0
821821 − 1.66017i − 0.0579403i −0.999580 0.0289702i 0.990777π-0.990777\pi
0.999580 0.0289702i 0.00922278π-0.00922278\pi
822822 0 0
823823 33.9444 1.18323 0.591613 0.806222i 0.298491π-0.298491\pi
0.591613 + 0.806222i 0.298491π0.298491\pi
824824 0 0
825825 0 0
826826 0 0
827827 35.2510i 1.22580i 0.790162 + 0.612898i 0.209996π0.209996\pi
−0.790162 + 0.612898i 0.790004π0.790004\pi
828828 0 0
829829 − 36.8215i − 1.27886i −0.768847 0.639432i 0.779169π-0.779169\pi
0.768847 0.639432i 0.220831π-0.220831\pi
830830 0 0
831831 2.03252 0.0705073
832832 0 0
833833 −1.35831 −0.0470627
834834 0 0
835835 0 0
836836 0 0
837837 − 5.11584i − 0.176829i
838838 0 0
839839 −40.2678 −1.39020 −0.695100 0.718913i 0.744640π-0.744640\pi
−0.695100 + 0.718913i 0.744640π0.744640\pi
840840 0 0
841841 −30.5401 −1.05311
842842 0 0
843843 − 0.708570i − 0.0244044i
844844 0 0
845845 0 0
846846 0 0
847847 27.9756 0.961253
848848 0 0
849849 5.08627 0.174560
850850 0 0
851851 − 2.84305i − 0.0974585i
852852 0 0
853853 52.0753i 1.78302i 0.452997 + 0.891512i 0.350355π0.350355\pi
−0.452997 + 0.891512i 0.649645π0.649645\pi
854854 0 0
855855 0 0
856856 0 0
857857 48.7275 1.66450 0.832250 0.554400i 0.187052π-0.187052\pi
0.832250 + 0.554400i 0.187052π0.187052\pi
858858 0 0
859859 34.8415i 1.18878i 0.804178 + 0.594389i 0.202606π0.202606\pi
−0.804178 + 0.594389i 0.797394π0.797394\pi
860860 0 0
861861 − 3.31051i − 0.112822i
862862 0 0
863863 14.8198 0.504473 0.252237 0.967666i 0.418834π-0.418834\pi
0.252237 + 0.967666i 0.418834π0.418834\pi
864864 0 0
865865 0 0
866866 0 0
867867 1.73736i 0.0590039i
868868 0 0
869869 − 2.63310i − 0.0893218i
870870 0 0
871871 −20.3491 −0.689504
872872 0 0
873873 36.0575 1.22036
874874 0 0
875875 0 0
876876 0 0
877877 − 5.24283i − 0.177038i −0.996074 0.0885189i 0.971787π-0.971787\pi
0.996074 0.0885189i 0.0282134π-0.0282134\pi
878878 0 0
879879 −4.75590 −0.160413
880880 0 0
881881 −24.2313 −0.816374 −0.408187 0.912898i 0.633839π-0.633839\pi
−0.408187 + 0.912898i 0.633839π0.633839\pi
882882 0 0
883883 − 40.7796i − 1.37234i −0.727439 0.686172i 0.759290π-0.759290\pi
0.727439 0.686172i 0.240710π-0.240710\pi
884884 0 0
885885 0 0
886886 0 0
887887 4.68906 0.157443 0.0787216 0.996897i 0.474916π-0.474916\pi
0.0787216 + 0.996897i 0.474916π0.474916\pi
888888 0 0
889889 −10.7210 −0.359570
890890 0 0
891891 7.50729i 0.251504i
892892 0 0
893893 4.25194i 0.142286i
894894 0 0
895895 0 0
896896 0 0
897897 2.67483 0.0893100
898898 0 0
899899 31.9802i 1.06660i
900900 0 0
901901 − 28.4290i − 0.947108i
902902 0 0
903903 −2.01057 −0.0669076
904904 0 0
905905 0 0
906906 0 0
907907 − 3.54602i − 0.117744i −0.998266 0.0588718i 0.981250π-0.981250\pi
0.998266 0.0588718i 0.0187503π-0.0187503\pi
908908 0 0
909909 − 16.3062i − 0.540843i
910910 0 0
911911 −24.9437 −0.826420 −0.413210 0.910636i 0.635593π-0.635593\pi
−0.413210 + 0.910636i 0.635593π0.635593\pi
912912 0 0
913913 8.61063 0.284970
914914 0 0
915915 0 0
916916 0 0
917917 46.0933i 1.52213i
918918 0 0
919919 4.92584 0.162488 0.0812442 0.996694i 0.474111π-0.474111\pi
0.0812442 + 0.996694i 0.474111π0.474111\pi
920920 0 0
921921 0.479030 0.0157846
922922 0 0
923923 25.6205i 0.843308i
924924 0 0
925925 0 0
926926 0 0
927927 −14.7434 −0.484235
928928 0 0
929929 −39.6646 −1.30135 −0.650677 0.759354i 0.725515π-0.725515\pi
−0.650677 + 0.759354i 0.725515π0.725515\pi
930930 0 0
931931 − 0.418991i − 0.0137319i
932932 0 0
933933 0.0825014i 0.00270097i
934934 0 0
935935 0 0
936936 0 0
937937 31.3308 1.02353 0.511767 0.859125i 0.328991π-0.328991\pi
0.511767 + 0.859125i 0.328991π0.328991\pi
938938 0 0
939939 − 5.75824i − 0.187913i
940940 0 0
941941 − 13.1179i − 0.427630i −0.976874 0.213815i 0.931411π-0.931411\pi
0.976874 0.213815i 0.0685889π-0.0685889\pi
942942 0 0
943943 38.0671 1.23963
944944 0 0
945945 0 0
946946 0 0
947947 − 32.0477i − 1.04141i −0.853737 0.520705i 0.825669π-0.825669\pi
0.853737 0.520705i 0.174331π-0.174331\pi
948948 0 0
949949 − 19.3672i − 0.628686i
950950 0 0
951951 3.46441 0.112341
952952 0 0
953953 −33.0115 −1.06935 −0.534674 0.845059i 0.679565π-0.679565\pi
−0.534674 + 0.845059i 0.679565π0.679565\pi
954954 0 0
955955 0 0
956956 0 0
957957 1.39322i 0.0450363i
958958 0 0
959959 −18.6244 −0.601413
960960 0 0
961961 −13.8227 −0.445894
962962 0 0
963963 − 36.7967i − 1.18576i
964964 0 0
965965 0 0
966966 0 0
967967 −58.2596 −1.87350 −0.936751 0.349995i 0.886183π-0.886183\pi
−0.936751 + 0.349995i 0.886183π0.886183\pi
968968 0 0
969969 0.550666 0.0176900
970970 0 0
971971 − 25.2784i − 0.811223i −0.914046 0.405612i 0.867059π-0.867059\pi
0.914046 0.405612i 0.132941π-0.132941\pi
972972 0 0
973973 36.7744i 1.17893i
974974 0 0
975975 0 0
976976 0 0
977977 −17.7917 −0.569207 −0.284604 0.958645i 0.591862π-0.591862\pi
−0.284604 + 0.958645i 0.591862π0.591862\pi
978978 0 0
979979 − 7.01124i − 0.224080i
980980 0 0
981981 13.7220i 0.438111i
982982 0 0
983983 33.3339 1.06319 0.531594 0.846999i 0.321593π-0.321593\pi
0.531594 + 0.846999i 0.321593π0.321593\pi
984984 0 0
985985 0 0
986986 0 0
987987 2.65828i 0.0846140i
988988 0 0
989989 − 23.1192i − 0.735149i
990990 0 0
991991 21.9753 0.698069 0.349034 0.937110i 0.386510π-0.386510\pi
0.349034 + 0.937110i 0.386510π0.386510\pi
992992 0 0
993993 −2.64896 −0.0840622
994994 0 0
995995 0 0
996996 0 0
997997 − 42.6450i − 1.35058i −0.737553 0.675290i 0.764019π-0.764019\pi
0.737553 0.675290i 0.235981π-0.235981\pi
998998 0 0
999999 −0.539154 −0.0170581
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4000.2.d.c.2001.11 40
4.3 odd 2 1000.2.d.c.501.15 40
5.2 odd 4 4000.2.f.c.3249.12 20
5.3 odd 4 4000.2.f.d.3249.9 20
5.4 even 2 inner 4000.2.d.c.2001.30 40
8.3 odd 2 1000.2.d.c.501.16 yes 40
8.5 even 2 inner 4000.2.d.c.2001.12 40
20.3 even 4 1000.2.f.d.749.4 20
20.7 even 4 1000.2.f.c.749.17 20
20.19 odd 2 1000.2.d.c.501.26 yes 40
40.3 even 4 1000.2.f.c.749.18 20
40.13 odd 4 4000.2.f.c.3249.11 20
40.19 odd 2 1000.2.d.c.501.25 yes 40
40.27 even 4 1000.2.f.d.749.3 20
40.29 even 2 inner 4000.2.d.c.2001.29 40
40.37 odd 4 4000.2.f.d.3249.10 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1000.2.d.c.501.15 40 4.3 odd 2
1000.2.d.c.501.16 yes 40 8.3 odd 2
1000.2.d.c.501.25 yes 40 40.19 odd 2
1000.2.d.c.501.26 yes 40 20.19 odd 2
1000.2.f.c.749.17 20 20.7 even 4
1000.2.f.c.749.18 20 40.3 even 4
1000.2.f.d.749.3 20 40.27 even 4
1000.2.f.d.749.4 20 20.3 even 4
4000.2.d.c.2001.11 40 1.1 even 1 trivial
4000.2.d.c.2001.12 40 8.5 even 2 inner
4000.2.d.c.2001.29 40 40.29 even 2 inner
4000.2.d.c.2001.30 40 5.4 even 2 inner
4000.2.f.c.3249.11 20 40.13 odd 4
4000.2.f.c.3249.12 20 5.2 odd 4
4000.2.f.d.3249.9 20 5.3 odd 4
4000.2.f.d.3249.10 20 40.37 odd 4