Properties

Label 1000.2.d.c.501.15
Level $1000$
Weight $2$
Character 1000.501
Analytic conductor $7.985$
Analytic rank $0$
Dimension $40$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1000,2,Mod(501,1000)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1000, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1000.501");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1000 = 2^{3} \cdot 5^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1000.d (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.98504020213\)
Analytic rank: \(0\)
Dimension: \(40\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 501.15
Character \(\chi\) \(=\) 1000.501
Dual form 1000.2.d.c.501.16

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.572751 - 1.29304i) q^{2} +0.207209i q^{3} +(-1.34391 + 1.48118i) q^{4} +(0.267929 - 0.118679i) q^{6} -2.73181 q^{7} +(2.68496 + 0.889389i) q^{8} +2.95706 q^{9} -0.871377i q^{11} +(-0.306913 - 0.278470i) q^{12} +1.98325i q^{13} +(1.56464 + 3.53234i) q^{14} +(-0.387793 - 3.98116i) q^{16} -2.93520 q^{17} +(-1.69366 - 3.82361i) q^{18} +0.905406i q^{19} -0.566054i q^{21} +(-1.12673 + 0.499082i) q^{22} -6.50896 q^{23} +(-0.184289 + 0.556346i) q^{24} +(2.56442 - 1.13591i) q^{26} +1.23435i q^{27} +(3.67131 - 4.04630i) q^{28} +7.71622i q^{29} -4.14455 q^{31} +(-4.92569 + 2.78164i) q^{32} +0.180557 q^{33} +(1.68114 + 3.79533i) q^{34} +(-3.97404 + 4.37995i) q^{36} -0.436790i q^{37} +(1.17073 - 0.518572i) q^{38} -0.410946 q^{39} +5.84841 q^{41} +(-0.731931 + 0.324208i) q^{42} +3.55191i q^{43} +(1.29067 + 1.17106i) q^{44} +(3.72801 + 8.41636i) q^{46} +4.69617 q^{47} +(0.824930 - 0.0803540i) q^{48} +0.462766 q^{49} -0.608198i q^{51} +(-2.93755 - 2.66531i) q^{52} +9.68555i q^{53} +(1.59607 - 0.706977i) q^{54} +(-7.33478 - 2.42964i) q^{56} -0.187608 q^{57} +(9.97739 - 4.41947i) q^{58} +12.8197i q^{59} +12.7406i q^{61} +(2.37379 + 5.35907i) q^{62} -8.07813 q^{63} +(6.41797 + 4.77594i) q^{64} +(-0.103414 - 0.233467i) q^{66} -10.2605i q^{67} +(3.94465 - 4.34756i) q^{68} -1.34871i q^{69} -12.9184 q^{71} +(7.93959 + 2.62998i) q^{72} -9.76540 q^{73} +(-0.564788 + 0.250172i) q^{74} +(-1.34107 - 1.21679i) q^{76} +2.38043i q^{77} +(0.235369 + 0.531370i) q^{78} +3.02177 q^{79} +8.61542 q^{81} +(-3.34968 - 7.56223i) q^{82} +9.88164i q^{83} +(0.838428 + 0.760727i) q^{84} +(4.59276 - 2.03436i) q^{86} -1.59887 q^{87} +(0.774993 - 2.33961i) q^{88} -8.04615 q^{89} -5.41785i q^{91} +(8.74748 - 9.64095i) q^{92} -0.858786i q^{93} +(-2.68973 - 6.07234i) q^{94} +(-0.576380 - 1.02065i) q^{96} +12.1937 q^{97} +(-0.265050 - 0.598376i) q^{98} -2.57672i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q + 6 q^{4} - 2 q^{6} - 24 q^{9} + 12 q^{14} + 18 q^{16} - 6 q^{24} + 20 q^{26} + 48 q^{31} - 6 q^{34} - 40 q^{36} + 8 q^{39} + 44 q^{41} + 8 q^{44} - 30 q^{46} + 12 q^{49} - 2 q^{54} + 50 q^{56} + 72 q^{64}+ \cdots + 12 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1000\mathbb{Z}\right)^\times\).

\(n\) \(377\) \(501\) \(751\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.572751 1.29304i −0.404996 0.914319i
\(3\) 0.207209i 0.119632i 0.998209 + 0.0598160i \(0.0190514\pi\)
−0.998209 + 0.0598160i \(0.980949\pi\)
\(4\) −1.34391 + 1.48118i −0.671957 + 0.740590i
\(5\) 0 0
\(6\) 0.267929 0.118679i 0.109382 0.0484504i
\(7\) −2.73181 −1.03253 −0.516263 0.856430i \(-0.672677\pi\)
−0.516263 + 0.856430i \(0.672677\pi\)
\(8\) 2.68496 + 0.889389i 0.949275 + 0.314446i
\(9\) 2.95706 0.985688
\(10\) 0 0
\(11\) 0.871377i 0.262730i −0.991334 0.131365i \(-0.958064\pi\)
0.991334 0.131365i \(-0.0419360\pi\)
\(12\) −0.306913 0.278470i −0.0885982 0.0803875i
\(13\) 1.98325i 0.550054i 0.961437 + 0.275027i \(0.0886867\pi\)
−0.961437 + 0.275027i \(0.911313\pi\)
\(14\) 1.56464 + 3.53234i 0.418169 + 0.944057i
\(15\) 0 0
\(16\) −0.387793 3.98116i −0.0969483 0.995289i
\(17\) −2.93520 −0.711890 −0.355945 0.934507i \(-0.615841\pi\)
−0.355945 + 0.934507i \(0.615841\pi\)
\(18\) −1.69366 3.82361i −0.399200 0.901233i
\(19\) 0.905406i 0.207714i 0.994592 + 0.103857i \(0.0331185\pi\)
−0.994592 + 0.103857i \(0.966882\pi\)
\(20\) 0 0
\(21\) 0.566054i 0.123523i
\(22\) −1.12673 + 0.499082i −0.240219 + 0.106405i
\(23\) −6.50896 −1.35721 −0.678606 0.734502i \(-0.737416\pi\)
−0.678606 + 0.734502i \(0.737416\pi\)
\(24\) −0.184289 + 0.556346i −0.0376178 + 0.113564i
\(25\) 0 0
\(26\) 2.56442 1.13591i 0.502924 0.222769i
\(27\) 1.23435i 0.237552i
\(28\) 3.67131 4.04630i 0.693813 0.764679i
\(29\) 7.71622i 1.43287i 0.697656 + 0.716433i \(0.254227\pi\)
−0.697656 + 0.716433i \(0.745773\pi\)
\(30\) 0 0
\(31\) −4.14455 −0.744383 −0.372191 0.928156i \(-0.621394\pi\)
−0.372191 + 0.928156i \(0.621394\pi\)
\(32\) −4.92569 + 2.78164i −0.870748 + 0.491730i
\(33\) 0.180557 0.0314309
\(34\) 1.68114 + 3.79533i 0.288313 + 0.650895i
\(35\) 0 0
\(36\) −3.97404 + 4.37995i −0.662340 + 0.729991i
\(37\) 0.436790i 0.0718078i −0.999355 0.0359039i \(-0.988569\pi\)
0.999355 0.0359039i \(-0.0114310\pi\)
\(38\) 1.17073 0.518572i 0.189917 0.0841234i
\(39\) −0.410946 −0.0658040
\(40\) 0 0
\(41\) 5.84841 0.913368 0.456684 0.889629i \(-0.349037\pi\)
0.456684 + 0.889629i \(0.349037\pi\)
\(42\) −0.731931 + 0.324208i −0.112939 + 0.0500263i
\(43\) 3.55191i 0.541661i 0.962627 + 0.270830i \(0.0872983\pi\)
−0.962627 + 0.270830i \(0.912702\pi\)
\(44\) 1.29067 + 1.17106i 0.194575 + 0.176543i
\(45\) 0 0
\(46\) 3.72801 + 8.41636i 0.549665 + 1.24092i
\(47\) 4.69617 0.685006 0.342503 0.939517i \(-0.388725\pi\)
0.342503 + 0.939517i \(0.388725\pi\)
\(48\) 0.824930 0.0803540i 0.119068 0.0115981i
\(49\) 0.462766 0.0661095
\(50\) 0 0
\(51\) 0.608198i 0.0851648i
\(52\) −2.93755 2.66531i −0.407364 0.369612i
\(53\) 9.68555i 1.33041i 0.746660 + 0.665206i \(0.231656\pi\)
−0.746660 + 0.665206i \(0.768344\pi\)
\(54\) 1.59607 0.706977i 0.217198 0.0962074i
\(55\) 0 0
\(56\) −7.33478 2.42964i −0.980151 0.324674i
\(57\) −0.187608 −0.0248493
\(58\) 9.97739 4.41947i 1.31010 0.580305i
\(59\) 12.8197i 1.66899i 0.551016 + 0.834495i \(0.314240\pi\)
−0.551016 + 0.834495i \(0.685760\pi\)
\(60\) 0 0
\(61\) 12.7406i 1.63126i 0.578573 + 0.815630i \(0.303610\pi\)
−0.578573 + 0.815630i \(0.696390\pi\)
\(62\) 2.37379 + 5.35907i 0.301472 + 0.680603i
\(63\) −8.07813 −1.01775
\(64\) 6.41797 + 4.77594i 0.802247 + 0.596993i
\(65\) 0 0
\(66\) −0.103414 0.233467i −0.0127294 0.0287379i
\(67\) 10.2605i 1.25352i −0.779212 0.626760i \(-0.784381\pi\)
0.779212 0.626760i \(-0.215619\pi\)
\(68\) 3.94465 4.34756i 0.478360 0.527219i
\(69\) 1.34871i 0.162366i
\(70\) 0 0
\(71\) −12.9184 −1.53314 −0.766569 0.642162i \(-0.778038\pi\)
−0.766569 + 0.642162i \(0.778038\pi\)
\(72\) 7.93959 + 2.62998i 0.935689 + 0.309946i
\(73\) −9.76540 −1.14295 −0.571477 0.820618i \(-0.693629\pi\)
−0.571477 + 0.820618i \(0.693629\pi\)
\(74\) −0.564788 + 0.250172i −0.0656552 + 0.0290819i
\(75\) 0 0
\(76\) −1.34107 1.21679i −0.153831 0.139575i
\(77\) 2.38043i 0.271276i
\(78\) 0.235369 + 0.531370i 0.0266503 + 0.0601658i
\(79\) 3.02177 0.339976 0.169988 0.985446i \(-0.445627\pi\)
0.169988 + 0.985446i \(0.445627\pi\)
\(80\) 0 0
\(81\) 8.61542 0.957269
\(82\) −3.34968 7.56223i −0.369910 0.835109i
\(83\) 9.88164i 1.08465i 0.840169 + 0.542325i \(0.182456\pi\)
−0.840169 + 0.542325i \(0.817544\pi\)
\(84\) 0.838428 + 0.760727i 0.0914800 + 0.0830021i
\(85\) 0 0
\(86\) 4.59276 2.03436i 0.495250 0.219370i
\(87\) −1.59887 −0.171417
\(88\) 0.774993 2.33961i 0.0826146 0.249403i
\(89\) −8.04615 −0.852891 −0.426445 0.904513i \(-0.640234\pi\)
−0.426445 + 0.904513i \(0.640234\pi\)
\(90\) 0 0
\(91\) 5.41785i 0.567945i
\(92\) 8.74748 9.64095i 0.911988 1.00514i
\(93\) 0.858786i 0.0890519i
\(94\) −2.68973 6.07234i −0.277425 0.626314i
\(95\) 0 0
\(96\) −0.576380 1.02065i −0.0588266 0.104169i
\(97\) 12.1937 1.23808 0.619041 0.785359i \(-0.287522\pi\)
0.619041 + 0.785359i \(0.287522\pi\)
\(98\) −0.265050 0.598376i −0.0267741 0.0604451i
\(99\) 2.57672i 0.258970i
\(100\) 0 0
\(101\) 5.51432i 0.548696i −0.961631 0.274348i \(-0.911538\pi\)
0.961631 0.274348i \(-0.0884619\pi\)
\(102\) −0.786426 + 0.348346i −0.0778678 + 0.0344914i
\(103\) 4.98581 0.491266 0.245633 0.969363i \(-0.421004\pi\)
0.245633 + 0.969363i \(0.421004\pi\)
\(104\) −1.76388 + 5.32493i −0.172962 + 0.522152i
\(105\) 0 0
\(106\) 12.5238 5.54740i 1.21642 0.538811i
\(107\) 12.4436i 1.20297i 0.798883 + 0.601486i \(0.205425\pi\)
−0.798883 + 0.601486i \(0.794575\pi\)
\(108\) −1.82830 1.65887i −0.175928 0.159624i
\(109\) 4.64042i 0.444472i 0.974993 + 0.222236i \(0.0713355\pi\)
−0.974993 + 0.222236i \(0.928664\pi\)
\(110\) 0 0
\(111\) 0.0905066 0.00859051
\(112\) 1.05938 + 10.8758i 0.100102 + 1.02766i
\(113\) −17.0652 −1.60536 −0.802680 0.596410i \(-0.796593\pi\)
−0.802680 + 0.596410i \(0.796593\pi\)
\(114\) 0.107452 + 0.242585i 0.0100638 + 0.0227201i
\(115\) 0 0
\(116\) −11.4291 10.3699i −1.06117 0.962824i
\(117\) 5.86459i 0.542181i
\(118\) 16.5765 7.34252i 1.52599 0.675934i
\(119\) 8.01840 0.735045
\(120\) 0 0
\(121\) 10.2407 0.930973
\(122\) 16.4741 7.29716i 1.49149 0.660654i
\(123\) 1.21184i 0.109268i
\(124\) 5.56991 6.13883i 0.500193 0.551283i
\(125\) 0 0
\(126\) 4.62675 + 10.4454i 0.412184 + 0.930546i
\(127\) 3.92450 0.348243 0.174121 0.984724i \(-0.444291\pi\)
0.174121 + 0.984724i \(0.444291\pi\)
\(128\) 2.49959 11.0341i 0.220935 0.975289i
\(129\) −0.735986 −0.0647999
\(130\) 0 0
\(131\) 16.8728i 1.47419i −0.675792 0.737093i \(-0.736198\pi\)
0.675792 0.737093i \(-0.263802\pi\)
\(132\) −0.242653 + 0.267437i −0.0211202 + 0.0232774i
\(133\) 2.47339i 0.214470i
\(134\) −13.2673 + 5.87671i −1.14612 + 0.507671i
\(135\) 0 0
\(136\) −7.88088 2.61053i −0.675780 0.223851i
\(137\) −6.81761 −0.582468 −0.291234 0.956652i \(-0.594066\pi\)
−0.291234 + 0.956652i \(0.594066\pi\)
\(138\) −1.74394 + 0.772476i −0.148454 + 0.0657575i
\(139\) 13.4616i 1.14180i −0.821021 0.570898i \(-0.806595\pi\)
0.821021 0.570898i \(-0.193405\pi\)
\(140\) 0 0
\(141\) 0.973086i 0.0819486i
\(142\) 7.39905 + 16.7041i 0.620914 + 1.40178i
\(143\) 1.72816 0.144516
\(144\) −1.14673 11.7725i −0.0955607 0.981045i
\(145\) 0 0
\(146\) 5.59314 + 12.6271i 0.462891 + 1.04502i
\(147\) 0.0958892i 0.00790880i
\(148\) 0.646965 + 0.587008i 0.0531802 + 0.0482518i
\(149\) 19.6182i 1.60719i −0.595179 0.803593i \(-0.702919\pi\)
0.595179 0.803593i \(-0.297081\pi\)
\(150\) 0 0
\(151\) −21.8652 −1.77937 −0.889684 0.456577i \(-0.849075\pi\)
−0.889684 + 0.456577i \(0.849075\pi\)
\(152\) −0.805258 + 2.43097i −0.0653150 + 0.197178i
\(153\) −8.67957 −0.701702
\(154\) 3.07800 1.36340i 0.248032 0.109866i
\(155\) 0 0
\(156\) 0.552275 0.608685i 0.0442174 0.0487338i
\(157\) 5.34144i 0.426293i −0.977020 0.213147i \(-0.931629\pi\)
0.977020 0.213147i \(-0.0683712\pi\)
\(158\) −1.73072 3.90727i −0.137689 0.310846i
\(159\) −2.00693 −0.159160
\(160\) 0 0
\(161\) 17.7812 1.40136
\(162\) −4.93449 11.1401i −0.387690 0.875249i
\(163\) 17.4676i 1.36817i 0.729401 + 0.684086i \(0.239799\pi\)
−0.729401 + 0.684086i \(0.760201\pi\)
\(164\) −7.85975 + 8.66255i −0.613744 + 0.676431i
\(165\) 0 0
\(166\) 12.7774 5.65971i 0.991716 0.439279i
\(167\) 11.5956 0.897293 0.448647 0.893709i \(-0.351906\pi\)
0.448647 + 0.893709i \(0.351906\pi\)
\(168\) 0.503442 1.51983i 0.0388414 0.117257i
\(169\) 9.06673 0.697441
\(170\) 0 0
\(171\) 2.67734i 0.204742i
\(172\) −5.26102 4.77346i −0.401149 0.363973i
\(173\) 9.07537i 0.689988i 0.938605 + 0.344994i \(0.112119\pi\)
−0.938605 + 0.344994i \(0.887881\pi\)
\(174\) 0.915752 + 2.06740i 0.0694230 + 0.156729i
\(175\) 0 0
\(176\) −3.46909 + 0.337914i −0.261493 + 0.0254712i
\(177\) −2.65636 −0.199664
\(178\) 4.60844 + 10.4040i 0.345417 + 0.779814i
\(179\) 10.0236i 0.749200i −0.927186 0.374600i \(-0.877780\pi\)
0.927186 0.374600i \(-0.122220\pi\)
\(180\) 0 0
\(181\) 14.2992i 1.06285i 0.847106 + 0.531424i \(0.178343\pi\)
−0.847106 + 0.531424i \(0.821657\pi\)
\(182\) −7.00550 + 3.10307i −0.519282 + 0.230015i
\(183\) −2.63995 −0.195151
\(184\) −17.4763 5.78900i −1.28837 0.426771i
\(185\) 0 0
\(186\) −1.11045 + 0.491870i −0.0814218 + 0.0360657i
\(187\) 2.55767i 0.187035i
\(188\) −6.31124 + 6.95587i −0.460294 + 0.507309i
\(189\) 3.37202i 0.245278i
\(190\) 0 0
\(191\) −13.4414 −0.972588 −0.486294 0.873795i \(-0.661652\pi\)
−0.486294 + 0.873795i \(0.661652\pi\)
\(192\) −0.989616 + 1.32986i −0.0714194 + 0.0959743i
\(193\) 20.0219 1.44121 0.720606 0.693345i \(-0.243864\pi\)
0.720606 + 0.693345i \(0.243864\pi\)
\(194\) −6.98394 15.7669i −0.501418 1.13200i
\(195\) 0 0
\(196\) −0.621918 + 0.685441i −0.0444227 + 0.0489601i
\(197\) 13.4963i 0.961568i −0.876839 0.480784i \(-0.840352\pi\)
0.876839 0.480784i \(-0.159648\pi\)
\(198\) −3.33180 + 1.47582i −0.236781 + 0.104882i
\(199\) −14.1065 −0.999981 −0.499990 0.866031i \(-0.666663\pi\)
−0.499990 + 0.866031i \(0.666663\pi\)
\(200\) 0 0
\(201\) 2.12607 0.149961
\(202\) −7.13025 + 3.15833i −0.501683 + 0.222219i
\(203\) 21.0792i 1.47947i
\(204\) 0.900852 + 0.817366i 0.0630722 + 0.0572271i
\(205\) 0 0
\(206\) −2.85562 6.44686i −0.198961 0.449174i
\(207\) −19.2474 −1.33779
\(208\) 7.89562 0.769089i 0.547463 0.0533267i
\(209\) 0.788950 0.0545728
\(210\) 0 0
\(211\) 13.1355i 0.904288i 0.891945 + 0.452144i \(0.149341\pi\)
−0.891945 + 0.452144i \(0.850659\pi\)
\(212\) −14.3460 13.0165i −0.985290 0.893979i
\(213\) 2.67681i 0.183412i
\(214\) 16.0901 7.12710i 1.09990 0.487199i
\(215\) 0 0
\(216\) −1.09782 + 3.31419i −0.0746973 + 0.225502i
\(217\) 11.3221 0.768594
\(218\) 6.00026 2.65780i 0.406389 0.180009i
\(219\) 2.02347i 0.136734i
\(220\) 0 0
\(221\) 5.82122i 0.391578i
\(222\) −0.0518377 0.117029i −0.00347912 0.00785446i
\(223\) 0.718852 0.0481379 0.0240689 0.999710i \(-0.492338\pi\)
0.0240689 + 0.999710i \(0.492338\pi\)
\(224\) 13.4560 7.59891i 0.899070 0.507724i
\(225\) 0 0
\(226\) 9.77411 + 22.0660i 0.650164 + 1.46781i
\(227\) 12.0713i 0.801198i −0.916254 0.400599i \(-0.868802\pi\)
0.916254 0.400599i \(-0.131198\pi\)
\(228\) 0.252129 0.277881i 0.0166976 0.0184031i
\(229\) 10.3408i 0.683342i −0.939820 0.341671i \(-0.889007\pi\)
0.939820 0.341671i \(-0.110993\pi\)
\(230\) 0 0
\(231\) −0.493246 −0.0324532
\(232\) −6.86272 + 20.7177i −0.450560 + 1.36018i
\(233\) 4.03296 0.264208 0.132104 0.991236i \(-0.457827\pi\)
0.132104 + 0.991236i \(0.457827\pi\)
\(234\) 7.58316 3.35895i 0.495727 0.219581i
\(235\) 0 0
\(236\) −18.9884 17.2286i −1.23604 1.12149i
\(237\) 0.626136i 0.0406719i
\(238\) −4.59254 10.3681i −0.297690 0.672065i
\(239\) −11.7267 −0.758540 −0.379270 0.925286i \(-0.623825\pi\)
−0.379270 + 0.925286i \(0.623825\pi\)
\(240\) 0 0
\(241\) 12.7697 0.822569 0.411284 0.911507i \(-0.365080\pi\)
0.411284 + 0.911507i \(0.365080\pi\)
\(242\) −5.86537 13.2417i −0.377040 0.851206i
\(243\) 5.48825i 0.352072i
\(244\) −18.8711 17.1222i −1.20810 1.09614i
\(245\) 0 0
\(246\) 1.56696 0.694082i 0.0999057 0.0442531i
\(247\) −1.79564 −0.114254
\(248\) −11.1279 3.68612i −0.706624 0.234069i
\(249\) −2.04756 −0.129759
\(250\) 0 0
\(251\) 22.8026i 1.43929i −0.694344 0.719644i \(-0.744305\pi\)
0.694344 0.719644i \(-0.255695\pi\)
\(252\) 10.8563 11.9652i 0.683883 0.753735i
\(253\) 5.67176i 0.356581i
\(254\) −2.24776 5.07454i −0.141037 0.318405i
\(255\) 0 0
\(256\) −15.6992 + 3.08773i −0.981202 + 0.192983i
\(257\) −22.6835 −1.41496 −0.707478 0.706736i \(-0.750167\pi\)
−0.707478 + 0.706736i \(0.750167\pi\)
\(258\) 0.421536 + 0.951660i 0.0262437 + 0.0592478i
\(259\) 1.19323i 0.0741435i
\(260\) 0 0
\(261\) 22.8174i 1.41236i
\(262\) −21.8173 + 9.66392i −1.34788 + 0.597039i
\(263\) −15.0066 −0.925346 −0.462673 0.886529i \(-0.653110\pi\)
−0.462673 + 0.886529i \(0.653110\pi\)
\(264\) 0.484787 + 0.160585i 0.0298366 + 0.00988334i
\(265\) 0 0
\(266\) −3.19820 + 1.41664i −0.196094 + 0.0868596i
\(267\) 1.66723i 0.102033i
\(268\) 15.1977 + 13.7892i 0.928345 + 0.842312i
\(269\) 15.3940i 0.938591i 0.883041 + 0.469295i \(0.155492\pi\)
−0.883041 + 0.469295i \(0.844508\pi\)
\(270\) 0 0
\(271\) −15.1636 −0.921121 −0.460561 0.887628i \(-0.652352\pi\)
−0.460561 + 0.887628i \(0.652352\pi\)
\(272\) 1.13825 + 11.6855i 0.0690165 + 0.708537i
\(273\) 1.12262 0.0679443
\(274\) 3.90479 + 8.81546i 0.235897 + 0.532561i
\(275\) 0 0
\(276\) 1.99769 + 1.81255i 0.120247 + 0.109103i
\(277\) 9.80905i 0.589369i 0.955595 + 0.294684i \(0.0952145\pi\)
−0.955595 + 0.294684i \(0.904785\pi\)
\(278\) −17.4064 + 7.71012i −1.04396 + 0.462422i
\(279\) −12.2557 −0.733729
\(280\) 0 0
\(281\) 3.41960 0.203996 0.101998 0.994785i \(-0.467476\pi\)
0.101998 + 0.994785i \(0.467476\pi\)
\(282\) 1.25824 0.557335i 0.0749271 0.0331888i
\(283\) 24.5466i 1.45914i −0.683904 0.729572i \(-0.739719\pi\)
0.683904 0.729572i \(-0.260281\pi\)
\(284\) 17.3613 19.1346i 1.03020 1.13543i
\(285\) 0 0
\(286\) −0.989803 2.23458i −0.0585282 0.132133i
\(287\) −15.9767 −0.943076
\(288\) −14.5656 + 8.22550i −0.858286 + 0.484692i
\(289\) −8.38461 −0.493212
\(290\) 0 0
\(291\) 2.52664i 0.148114i
\(292\) 13.1238 14.4643i 0.768015 0.846460i
\(293\) 22.9522i 1.34088i −0.741962 0.670442i \(-0.766104\pi\)
0.741962 0.670442i \(-0.233896\pi\)
\(294\) 0.123989 0.0549206i 0.00723117 0.00320303i
\(295\) 0 0
\(296\) 0.388476 1.17276i 0.0225797 0.0681654i
\(297\) 1.07559 0.0624120
\(298\) −25.3672 + 11.2363i −1.46948 + 0.650904i
\(299\) 12.9089i 0.746540i
\(300\) 0 0
\(301\) 9.70312i 0.559279i
\(302\) 12.5233 + 28.2727i 0.720637 + 1.62691i
\(303\) 1.14261 0.0656415
\(304\) 3.60456 0.351110i 0.206736 0.0201375i
\(305\) 0 0
\(306\) 4.97123 + 11.2231i 0.284186 + 0.641579i
\(307\) 2.31183i 0.131943i −0.997822 0.0659714i \(-0.978985\pi\)
0.997822 0.0659714i \(-0.0210146\pi\)
\(308\) −3.52585 3.19910i −0.200904 0.182285i
\(309\) 1.03310i 0.0587711i
\(310\) 0 0
\(311\) 0.398156 0.0225774 0.0112887 0.999936i \(-0.496407\pi\)
0.0112887 + 0.999936i \(0.496407\pi\)
\(312\) −1.10337 0.365491i −0.0624661 0.0206918i
\(313\) 27.7896 1.57076 0.785380 0.619013i \(-0.212467\pi\)
0.785380 + 0.619013i \(0.212467\pi\)
\(314\) −6.90670 + 3.05931i −0.389768 + 0.172647i
\(315\) 0 0
\(316\) −4.06100 + 4.47579i −0.228449 + 0.251783i
\(317\) 16.7194i 0.939056i 0.882918 + 0.469528i \(0.155576\pi\)
−0.882918 + 0.469528i \(0.844424\pi\)
\(318\) 1.14947 + 2.59504i 0.0644590 + 0.145523i
\(319\) 6.72374 0.376457
\(320\) 0 0
\(321\) −2.57843 −0.143914
\(322\) −10.1842 22.9919i −0.567544 1.28129i
\(323\) 2.65755i 0.147870i
\(324\) −11.5784 + 12.7610i −0.643244 + 0.708945i
\(325\) 0 0
\(326\) 22.5864 10.0046i 1.25094 0.554104i
\(327\) −0.961535 −0.0531730
\(328\) 15.7027 + 5.20151i 0.867037 + 0.287205i
\(329\) −12.8290 −0.707286
\(330\) 0 0
\(331\) 12.7840i 0.702673i 0.936249 + 0.351337i \(0.114273\pi\)
−0.936249 + 0.351337i \(0.885727\pi\)
\(332\) −14.6365 13.2801i −0.803282 0.728838i
\(333\) 1.29162i 0.0707801i
\(334\) −6.64138 14.9936i −0.363400 0.820412i
\(335\) 0 0
\(336\) −2.25355 + 0.219512i −0.122941 + 0.0119753i
\(337\) 4.73648 0.258012 0.129006 0.991644i \(-0.458821\pi\)
0.129006 + 0.991644i \(0.458821\pi\)
\(338\) −5.19298 11.7237i −0.282461 0.637683i
\(339\) 3.53606i 0.192052i
\(340\) 0 0
\(341\) 3.61147i 0.195572i
\(342\) 3.46192 1.53345i 0.187199 0.0829195i
\(343\) 17.8585 0.964266
\(344\) −3.15903 + 9.53671i −0.170323 + 0.514185i
\(345\) 0 0
\(346\) 11.7348 5.19793i 0.630869 0.279442i
\(347\) 25.7080i 1.38008i 0.723773 + 0.690038i \(0.242406\pi\)
−0.723773 + 0.690038i \(0.757594\pi\)
\(348\) 2.14874 2.36821i 0.115184 0.126949i
\(349\) 7.18541i 0.384626i 0.981334 + 0.192313i \(0.0615989\pi\)
−0.981334 + 0.192313i \(0.938401\pi\)
\(350\) 0 0
\(351\) −2.44803 −0.130666
\(352\) 2.42386 + 4.29214i 0.129192 + 0.228772i
\(353\) 5.97661 0.318103 0.159052 0.987270i \(-0.449156\pi\)
0.159052 + 0.987270i \(0.449156\pi\)
\(354\) 1.52143 + 3.43479i 0.0808632 + 0.182557i
\(355\) 0 0
\(356\) 10.8133 11.9178i 0.573106 0.631643i
\(357\) 1.66148i 0.0879349i
\(358\) −12.9610 + 5.74103i −0.685008 + 0.303423i
\(359\) 30.7769 1.62434 0.812171 0.583420i \(-0.198286\pi\)
0.812171 + 0.583420i \(0.198286\pi\)
\(360\) 0 0
\(361\) 18.1802 0.956855
\(362\) 18.4894 8.18985i 0.971782 0.430449i
\(363\) 2.12196i 0.111374i
\(364\) 8.02481 + 7.28112i 0.420614 + 0.381634i
\(365\) 0 0
\(366\) 1.51203 + 3.41357i 0.0790353 + 0.178430i
\(367\) 22.3956 1.16904 0.584520 0.811379i \(-0.301283\pi\)
0.584520 + 0.811379i \(0.301283\pi\)
\(368\) 2.52413 + 25.9132i 0.131579 + 1.35082i
\(369\) 17.2941 0.900296
\(370\) 0 0
\(371\) 26.4590i 1.37368i
\(372\) 1.27202 + 1.15413i 0.0659510 + 0.0598391i
\(373\) 16.1839i 0.837973i 0.907992 + 0.418986i \(0.137615\pi\)
−0.907992 + 0.418986i \(0.862385\pi\)
\(374\) 3.30717 1.46490i 0.171010 0.0757484i
\(375\) 0 0
\(376\) 12.6090 + 4.17672i 0.650259 + 0.215398i
\(377\) −15.3032 −0.788153
\(378\) −4.36016 + 1.93133i −0.224262 + 0.0993367i
\(379\) 10.9692i 0.563449i 0.959495 + 0.281724i \(0.0909063\pi\)
−0.959495 + 0.281724i \(0.909094\pi\)
\(380\) 0 0
\(381\) 0.813190i 0.0416610i
\(382\) 7.69859 + 17.3803i 0.393894 + 0.889255i
\(383\) 18.3816 0.939256 0.469628 0.882864i \(-0.344388\pi\)
0.469628 + 0.882864i \(0.344388\pi\)
\(384\) 2.28637 + 0.517937i 0.116676 + 0.0264308i
\(385\) 0 0
\(386\) −11.4676 25.8892i −0.583685 1.31773i
\(387\) 10.5032i 0.533909i
\(388\) −16.3873 + 18.0611i −0.831937 + 0.916911i
\(389\) 30.2480i 1.53364i −0.641865 0.766818i \(-0.721839\pi\)
0.641865 0.766818i \(-0.278161\pi\)
\(390\) 0 0
\(391\) 19.1051 0.966186
\(392\) 1.24251 + 0.411579i 0.0627561 + 0.0207879i
\(393\) 3.49619 0.176360
\(394\) −17.4512 + 7.72999i −0.879180 + 0.389431i
\(395\) 0 0
\(396\) 3.81659 + 3.46289i 0.191791 + 0.174017i
\(397\) 39.1270i 1.96373i −0.189582 0.981865i \(-0.560713\pi\)
0.189582 0.981865i \(-0.439287\pi\)
\(398\) 8.07948 + 18.2402i 0.404988 + 0.914301i
\(399\) 0.512508 0.0256575
\(400\) 0 0
\(401\) −10.2607 −0.512397 −0.256198 0.966624i \(-0.582470\pi\)
−0.256198 + 0.966624i \(0.582470\pi\)
\(402\) −1.21771 2.74909i −0.0607336 0.137112i
\(403\) 8.21966i 0.409451i
\(404\) 8.16771 + 7.41077i 0.406359 + 0.368700i
\(405\) 0 0
\(406\) −27.2563 + 12.0731i −1.35271 + 0.599180i
\(407\) −0.380609 −0.0188661
\(408\) 0.540925 1.63299i 0.0267798 0.0808448i
\(409\) 10.4383 0.516140 0.258070 0.966126i \(-0.416913\pi\)
0.258070 + 0.966126i \(0.416913\pi\)
\(410\) 0 0
\(411\) 1.41267i 0.0696818i
\(412\) −6.70049 + 7.38488i −0.330110 + 0.363827i
\(413\) 35.0211i 1.72327i
\(414\) 11.0240 + 24.8877i 0.541799 + 1.22316i
\(415\) 0 0
\(416\) −5.51668 9.76887i −0.270478 0.478958i
\(417\) 2.78935 0.136595
\(418\) −0.451872 1.02015i −0.0221018 0.0498969i
\(419\) 36.6607i 1.79099i 0.445067 + 0.895497i \(0.353180\pi\)
−0.445067 + 0.895497i \(0.646820\pi\)
\(420\) 0 0
\(421\) 10.4070i 0.507207i −0.967308 0.253603i \(-0.918384\pi\)
0.967308 0.253603i \(-0.0816158\pi\)
\(422\) 16.9848 7.52339i 0.826807 0.366233i
\(423\) 13.8869 0.675202
\(424\) −8.61422 + 26.0053i −0.418343 + 1.26293i
\(425\) 0 0
\(426\) −3.46123 + 1.53315i −0.167697 + 0.0742812i
\(427\) 34.8047i 1.68432i
\(428\) −18.4313 16.7232i −0.890910 0.808345i
\(429\) 0.358089i 0.0172887i
\(430\) 0 0
\(431\) −10.3866 −0.500306 −0.250153 0.968206i \(-0.580481\pi\)
−0.250153 + 0.968206i \(0.580481\pi\)
\(432\) 4.91416 0.478674i 0.236433 0.0230302i
\(433\) 7.01402 0.337072 0.168536 0.985695i \(-0.446096\pi\)
0.168536 + 0.985695i \(0.446096\pi\)
\(434\) −6.48474 14.6400i −0.311278 0.702740i
\(435\) 0 0
\(436\) −6.87330 6.23633i −0.329172 0.298666i
\(437\) 5.89325i 0.281912i
\(438\) −2.61644 + 1.15895i −0.125018 + 0.0553766i
\(439\) −3.40264 −0.162399 −0.0811995 0.996698i \(-0.525875\pi\)
−0.0811995 + 0.996698i \(0.525875\pi\)
\(440\) 0 0
\(441\) 1.36843 0.0651633
\(442\) −7.52709 + 3.33411i −0.358027 + 0.158587i
\(443\) 14.1103i 0.670399i −0.942147 0.335199i \(-0.891196\pi\)
0.942147 0.335199i \(-0.108804\pi\)
\(444\) −0.121633 + 0.134057i −0.00577245 + 0.00636205i
\(445\) 0 0
\(446\) −0.411723 0.929506i −0.0194956 0.0440134i
\(447\) 4.06506 0.192271
\(448\) −17.5327 13.0469i −0.828341 0.616410i
\(449\) −18.9957 −0.896463 −0.448231 0.893918i \(-0.647946\pi\)
−0.448231 + 0.893918i \(0.647946\pi\)
\(450\) 0 0
\(451\) 5.09617i 0.239969i
\(452\) 22.9342 25.2767i 1.07873 1.18891i
\(453\) 4.53066i 0.212869i
\(454\) −15.6086 + 6.91382i −0.732550 + 0.324482i
\(455\) 0 0
\(456\) −0.503719 0.166856i −0.0235888 0.00781376i
\(457\) 28.3050 1.32405 0.662027 0.749480i \(-0.269697\pi\)
0.662027 + 0.749480i \(0.269697\pi\)
\(458\) −13.3711 + 5.92273i −0.624793 + 0.276751i
\(459\) 3.62308i 0.169111i
\(460\) 0 0
\(461\) 11.2576i 0.524320i −0.965024 0.262160i \(-0.915565\pi\)
0.965024 0.262160i \(-0.0844348\pi\)
\(462\) 0.282507 + 0.637788i 0.0131434 + 0.0296726i
\(463\) −1.11665 −0.0518950 −0.0259475 0.999663i \(-0.508260\pi\)
−0.0259475 + 0.999663i \(0.508260\pi\)
\(464\) 30.7195 2.99230i 1.42612 0.138914i
\(465\) 0 0
\(466\) −2.30988 5.21479i −0.107003 0.241570i
\(467\) 1.34496i 0.0622374i 0.999516 + 0.0311187i \(0.00990699\pi\)
−0.999516 + 0.0311187i \(0.990093\pi\)
\(468\) −8.68652 7.88150i −0.401534 0.364322i
\(469\) 28.0297i 1.29429i
\(470\) 0 0
\(471\) 1.10679 0.0509983
\(472\) −11.4017 + 34.4205i −0.524808 + 1.58433i
\(473\) 3.09505 0.142311
\(474\) 0.809620 0.358620i 0.0371871 0.0164720i
\(475\) 0 0
\(476\) −10.7760 + 11.8767i −0.493919 + 0.544367i
\(477\) 28.6408i 1.31137i
\(478\) 6.71650 + 15.1632i 0.307205 + 0.693547i
\(479\) 26.2181 1.19794 0.598968 0.800773i \(-0.295578\pi\)
0.598968 + 0.800773i \(0.295578\pi\)
\(480\) 0 0
\(481\) 0.866263 0.0394982
\(482\) −7.31385 16.5118i −0.333137 0.752090i
\(483\) 3.68442i 0.167647i
\(484\) −13.7626 + 15.1683i −0.625574 + 0.689470i
\(485\) 0 0
\(486\) 7.09654 3.14340i 0.321906 0.142588i
\(487\) 12.2782 0.556378 0.278189 0.960526i \(-0.410266\pi\)
0.278189 + 0.960526i \(0.410266\pi\)
\(488\) −11.3313 + 34.2078i −0.512944 + 1.54852i
\(489\) −3.61945 −0.163677
\(490\) 0 0
\(491\) 32.3053i 1.45792i 0.684558 + 0.728959i \(0.259995\pi\)
−0.684558 + 0.728959i \(0.740005\pi\)
\(492\) −1.79495 1.62861i −0.0809228 0.0734233i
\(493\) 22.6486i 1.02004i
\(494\) 1.02846 + 2.32184i 0.0462724 + 0.104465i
\(495\) 0 0
\(496\) 1.60723 + 16.5001i 0.0721666 + 0.740876i
\(497\) 35.2907 1.58300
\(498\) 1.17274 + 2.64758i 0.0525518 + 0.118641i
\(499\) 6.14059i 0.274890i 0.990509 + 0.137445i \(0.0438891\pi\)
−0.990509 + 0.137445i \(0.956111\pi\)
\(500\) 0 0
\(501\) 2.40270i 0.107345i
\(502\) −29.4847 + 13.0602i −1.31597 + 0.582905i
\(503\) 26.1226 1.16475 0.582375 0.812921i \(-0.302124\pi\)
0.582375 + 0.812921i \(0.302124\pi\)
\(504\) −21.6894 7.18460i −0.966123 0.320027i
\(505\) 0 0
\(506\) 7.33382 3.24850i 0.326028 0.144414i
\(507\) 1.87870i 0.0834362i
\(508\) −5.27419 + 5.81289i −0.234004 + 0.257905i
\(509\) 8.02196i 0.355567i 0.984070 + 0.177784i \(0.0568927\pi\)
−0.984070 + 0.177784i \(0.943107\pi\)
\(510\) 0 0
\(511\) 26.6772 1.18013
\(512\) 12.9843 + 18.5313i 0.573831 + 0.818974i
\(513\) −1.11759 −0.0493429
\(514\) 12.9920 + 29.3307i 0.573051 + 1.29372i
\(515\) 0 0
\(516\) 0.989101 1.09013i 0.0435427 0.0479902i
\(517\) 4.09213i 0.179972i
\(518\) 1.54289 0.683421i 0.0677907 0.0300278i
\(519\) −1.88049 −0.0825446
\(520\) 0 0
\(521\) −37.3348 −1.63567 −0.817833 0.575456i \(-0.804825\pi\)
−0.817833 + 0.575456i \(0.804825\pi\)
\(522\) 29.5038 13.0687i 1.29135 0.572000i
\(523\) 41.8753i 1.83108i −0.402230 0.915539i \(-0.631765\pi\)
0.402230 0.915539i \(-0.368235\pi\)
\(524\) 24.9917 + 22.6756i 1.09177 + 0.990589i
\(525\) 0 0
\(526\) 8.59503 + 19.4041i 0.374761 + 0.846061i
\(527\) 12.1651 0.529919
\(528\) −0.0700187 0.718825i −0.00304717 0.0312829i
\(529\) 19.3666 0.842025
\(530\) 0 0
\(531\) 37.9088i 1.64510i
\(532\) 3.66354 + 3.32403i 0.158835 + 0.144115i
\(533\) 11.5988i 0.502401i
\(534\) −2.15580 + 0.954908i −0.0932906 + 0.0413229i
\(535\) 0 0
\(536\) 9.12558 27.5490i 0.394165 1.18994i
\(537\) 2.07698 0.0896283
\(538\) 19.9051 8.81694i 0.858171 0.380125i
\(539\) 0.403244i 0.0173690i
\(540\) 0 0
\(541\) 33.1542i 1.42541i 0.701464 + 0.712705i \(0.252530\pi\)
−0.701464 + 0.712705i \(0.747470\pi\)
\(542\) 8.68494 + 19.6071i 0.373050 + 0.842198i
\(543\) −2.96291 −0.127151
\(544\) 14.4579 8.16468i 0.619877 0.350058i
\(545\) 0 0
\(546\) −0.642984 1.45160i −0.0275172 0.0621227i
\(547\) 21.2749i 0.909650i 0.890581 + 0.454825i \(0.150298\pi\)
−0.890581 + 0.454825i \(0.849702\pi\)
\(548\) 9.16228 10.0981i 0.391393 0.431370i
\(549\) 37.6746i 1.60791i
\(550\) 0 0
\(551\) −6.98631 −0.297627
\(552\) 1.19953 3.62123i 0.0510554 0.154130i
\(553\) −8.25489 −0.351034
\(554\) 12.6835 5.61814i 0.538871 0.238692i
\(555\) 0 0
\(556\) 19.9390 + 18.0912i 0.845602 + 0.767237i
\(557\) 1.73333i 0.0734437i 0.999326 + 0.0367219i \(0.0116916\pi\)
−0.999326 + 0.0367219i \(0.988308\pi\)
\(558\) 7.01946 + 15.8471i 0.297157 + 0.670862i
\(559\) −7.04431 −0.297943
\(560\) 0 0
\(561\) −0.529970 −0.0223754
\(562\) −1.95858 4.42168i −0.0826176 0.186517i
\(563\) 47.0184i 1.98159i 0.135369 + 0.990795i \(0.456778\pi\)
−0.135369 + 0.990795i \(0.543222\pi\)
\(564\) −1.44132 1.30774i −0.0606903 0.0550659i
\(565\) 0 0
\(566\) −31.7398 + 14.0591i −1.33412 + 0.590948i
\(567\) −23.5357 −0.988405
\(568\) −34.6855 11.4895i −1.45537 0.482090i
\(569\) −0.301785 −0.0126515 −0.00632573 0.999980i \(-0.502014\pi\)
−0.00632573 + 0.999980i \(0.502014\pi\)
\(570\) 0 0
\(571\) 30.2200i 1.26467i −0.774697 0.632333i \(-0.782097\pi\)
0.774697 0.632333i \(-0.217903\pi\)
\(572\) −2.32249 + 2.55971i −0.0971083 + 0.107027i
\(573\) 2.78518i 0.116353i
\(574\) 9.15067 + 20.6586i 0.381942 + 0.862272i
\(575\) 0 0
\(576\) 18.9784 + 14.1228i 0.790765 + 0.588448i
\(577\) −4.58089 −0.190705 −0.0953524 0.995444i \(-0.530398\pi\)
−0.0953524 + 0.995444i \(0.530398\pi\)
\(578\) 4.80229 + 10.8416i 0.199749 + 0.450953i
\(579\) 4.14872i 0.172415i
\(580\) 0 0
\(581\) 26.9947i 1.11993i
\(582\) 3.26705 1.44713i 0.135423 0.0599856i
\(583\) 8.43976 0.349539
\(584\) −26.2197 8.68524i −1.08498 0.359398i
\(585\) 0 0
\(586\) −29.6782 + 13.1459i −1.22600 + 0.543052i
\(587\) 0.387716i 0.0160028i −0.999968 0.00800138i \(-0.997453\pi\)
0.999968 0.00800138i \(-0.00254695\pi\)
\(588\) −0.142029 0.128867i −0.00585718 0.00531437i
\(589\) 3.75250i 0.154619i
\(590\) 0 0
\(591\) 2.79654 0.115034
\(592\) −1.73893 + 0.169384i −0.0714696 + 0.00696165i
\(593\) 14.5864 0.598994 0.299497 0.954097i \(-0.403181\pi\)
0.299497 + 0.954097i \(0.403181\pi\)
\(594\) −0.616044 1.39078i −0.0252766 0.0570644i
\(595\) 0 0
\(596\) 29.0581 + 26.3652i 1.19027 + 1.07996i
\(597\) 2.92298i 0.119630i
\(598\) −16.6917 + 7.39357i −0.682575 + 0.302345i
\(599\) 5.66881 0.231621 0.115811 0.993271i \(-0.463053\pi\)
0.115811 + 0.993271i \(0.463053\pi\)
\(600\) 0 0
\(601\) −29.8385 −1.21714 −0.608569 0.793501i \(-0.708256\pi\)
−0.608569 + 0.793501i \(0.708256\pi\)
\(602\) −12.5465 + 5.55747i −0.511359 + 0.226506i
\(603\) 30.3410i 1.23558i
\(604\) 29.3850 32.3864i 1.19566 1.31778i
\(605\) 0 0
\(606\) −0.654433 1.47745i −0.0265845 0.0600172i
\(607\) 19.4752 0.790474 0.395237 0.918579i \(-0.370662\pi\)
0.395237 + 0.918579i \(0.370662\pi\)
\(608\) −2.51852 4.45975i −0.102139 0.180867i
\(609\) 4.36779 0.176992
\(610\) 0 0
\(611\) 9.31365i 0.376790i
\(612\) 11.6646 12.8560i 0.471513 0.519674i
\(613\) 39.6234i 1.60037i −0.599752 0.800186i \(-0.704734\pi\)
0.599752 0.800186i \(-0.295266\pi\)
\(614\) −2.98929 + 1.32410i −0.120638 + 0.0534363i
\(615\) 0 0
\(616\) −2.11713 + 6.39136i −0.0853017 + 0.257515i
\(617\) −32.0519 −1.29036 −0.645180 0.764031i \(-0.723218\pi\)
−0.645180 + 0.764031i \(0.723218\pi\)
\(618\) 1.33584 0.591710i 0.0537355 0.0238021i
\(619\) 17.9597i 0.721861i 0.932593 + 0.360930i \(0.117541\pi\)
−0.932593 + 0.360930i \(0.882459\pi\)
\(620\) 0 0
\(621\) 8.03437i 0.322408i
\(622\) −0.228044 0.514832i −0.00914374 0.0206429i
\(623\) 21.9805 0.880632
\(624\) 0.159362 + 1.63604i 0.00637958 + 0.0654940i
\(625\) 0 0
\(626\) −15.9165 35.9331i −0.636152 1.43618i
\(627\) 0.163477i 0.00652865i
\(628\) 7.91164 + 7.17843i 0.315709 + 0.286451i
\(629\) 1.28207i 0.0511193i
\(630\) 0 0
\(631\) 28.0265 1.11572 0.557858 0.829936i \(-0.311623\pi\)
0.557858 + 0.829936i \(0.311623\pi\)
\(632\) 8.11332 + 2.68753i 0.322730 + 0.106904i
\(633\) −2.72180 −0.108182
\(634\) 21.6189 9.57606i 0.858596 0.380314i
\(635\) 0 0
\(636\) 2.69714 2.97262i 0.106948 0.117872i
\(637\) 0.917780i 0.0363638i
\(638\) −3.85103 8.69408i −0.152464 0.344202i
\(639\) −38.2007 −1.51120
\(640\) 0 0
\(641\) −11.2647 −0.444929 −0.222465 0.974941i \(-0.571410\pi\)
−0.222465 + 0.974941i \(0.571410\pi\)
\(642\) 1.47680 + 3.33402i 0.0582845 + 0.131583i
\(643\) 48.2471i 1.90268i 0.308141 + 0.951341i \(0.400293\pi\)
−0.308141 + 0.951341i \(0.599707\pi\)
\(644\) −23.8964 + 26.3372i −0.941651 + 1.03783i
\(645\) 0 0
\(646\) −3.43632 + 1.52211i −0.135200 + 0.0598867i
\(647\) −31.8798 −1.25333 −0.626663 0.779291i \(-0.715580\pi\)
−0.626663 + 0.779291i \(0.715580\pi\)
\(648\) 23.1320 + 7.66246i 0.908712 + 0.301010i
\(649\) 11.1708 0.438494
\(650\) 0 0
\(651\) 2.34604i 0.0919484i
\(652\) −25.8727 23.4750i −1.01325 0.919352i
\(653\) 36.3662i 1.42312i 0.702627 + 0.711559i \(0.252010\pi\)
−0.702627 + 0.711559i \(0.747990\pi\)
\(654\) 0.550720 + 1.24331i 0.0215349 + 0.0486171i
\(655\) 0 0
\(656\) −2.26797 23.2834i −0.0885494 0.909065i
\(657\) −28.8769 −1.12660
\(658\) 7.34783 + 16.5884i 0.286448 + 0.646685i
\(659\) 5.48884i 0.213815i 0.994269 + 0.106907i \(0.0340949\pi\)
−0.994269 + 0.106907i \(0.965905\pi\)
\(660\) 0 0
\(661\) 29.5221i 1.14828i −0.818759 0.574138i \(-0.805337\pi\)
0.818759 0.574138i \(-0.194663\pi\)
\(662\) 16.5303 7.32206i 0.642467 0.284580i
\(663\) 1.20621 0.0468452
\(664\) −8.78862 + 26.5318i −0.341065 + 1.02963i
\(665\) 0 0
\(666\) −1.67011 + 0.739774i −0.0647156 + 0.0286657i
\(667\) 50.2246i 1.94470i
\(668\) −15.5835 + 17.1752i −0.602942 + 0.664527i
\(669\) 0.148952i 0.00575883i
\(670\) 0 0
\(671\) 11.1018 0.428581
\(672\) 1.57456 + 2.78821i 0.0607399 + 0.107557i
\(673\) −41.5796 −1.60278 −0.801389 0.598144i \(-0.795905\pi\)
−0.801389 + 0.598144i \(0.795905\pi\)
\(674\) −2.71282 6.12446i −0.104494 0.235905i
\(675\) 0 0
\(676\) −12.1849 + 13.4295i −0.468650 + 0.516518i
\(677\) 35.3724i 1.35947i 0.733457 + 0.679736i \(0.237906\pi\)
−0.733457 + 0.679736i \(0.762094\pi\)
\(678\) −4.57227 + 2.02528i −0.175597 + 0.0777804i
\(679\) −33.3108 −1.27835
\(680\) 0 0
\(681\) 2.50127 0.0958488
\(682\) 4.66977 2.06847i 0.178815 0.0792058i
\(683\) 22.5077i 0.861233i −0.902535 0.430617i \(-0.858296\pi\)
0.902535 0.430617i \(-0.141704\pi\)
\(684\) −3.96563 3.59812i −0.151630 0.137577i
\(685\) 0 0
\(686\) −10.2284 23.0917i −0.390524 0.881646i
\(687\) 2.14271 0.0817496
\(688\) 14.1407 1.37740i 0.539109 0.0525131i
\(689\) −19.2088 −0.731798
\(690\) 0 0
\(691\) 0.855355i 0.0325392i 0.999868 + 0.0162696i \(0.00517901\pi\)
−0.999868 + 0.0162696i \(0.994821\pi\)
\(692\) −13.4423 12.1965i −0.510998 0.463642i
\(693\) 7.03910i 0.267393i
\(694\) 33.2415 14.7243i 1.26183 0.558925i
\(695\) 0 0
\(696\) −4.29289 1.42201i −0.162721 0.0539013i
\(697\) −17.1662 −0.650218
\(698\) 9.29103 4.11545i 0.351671 0.155772i
\(699\) 0.835664i 0.0316077i
\(700\) 0 0
\(701\) 16.7658i 0.633236i −0.948553 0.316618i \(-0.897453\pi\)
0.948553 0.316618i \(-0.102547\pi\)
\(702\) 1.40211 + 3.16540i 0.0529193 + 0.119471i
\(703\) 0.395472 0.0149155
\(704\) 4.16165 5.59248i 0.156848 0.210774i
\(705\) 0 0
\(706\) −3.42311 7.72801i −0.128830 0.290848i
\(707\) 15.0641i 0.566542i
\(708\) 3.56992 3.93455i 0.134166 0.147870i
\(709\) 21.8389i 0.820177i 0.912046 + 0.410088i \(0.134502\pi\)
−0.912046 + 0.410088i \(0.865498\pi\)
\(710\) 0 0
\(711\) 8.93557 0.335110
\(712\) −21.6036 7.15616i −0.809628 0.268188i
\(713\) 26.9767 1.01029
\(714\) 2.14836 0.951614i 0.0804005 0.0356133i
\(715\) 0 0
\(716\) 14.8468 + 13.4709i 0.554851 + 0.503430i
\(717\) 2.42988i 0.0907456i
\(718\) −17.6275 39.7958i −0.657852 1.48517i
\(719\) 28.2838 1.05481 0.527403 0.849615i \(-0.323166\pi\)
0.527403 + 0.849615i \(0.323166\pi\)
\(720\) 0 0
\(721\) −13.6203 −0.507245
\(722\) −10.4127 23.5078i −0.387522 0.874870i
\(723\) 2.64599i 0.0984055i
\(724\) −21.1796 19.2168i −0.787135 0.714188i
\(725\) 0 0
\(726\) 2.74378 1.21535i 0.101831 0.0451060i
\(727\) 18.7205 0.694305 0.347152 0.937809i \(-0.387149\pi\)
0.347152 + 0.937809i \(0.387149\pi\)
\(728\) 4.81857 14.5467i 0.178588 0.539136i
\(729\) 24.7091 0.915150
\(730\) 0 0
\(731\) 10.4256i 0.385603i
\(732\) 3.54787 3.91025i 0.131133 0.144527i
\(733\) 3.61353i 0.133469i 0.997771 + 0.0667344i \(0.0212580\pi\)
−0.997771 + 0.0667344i \(0.978742\pi\)
\(734\) −12.8271 28.9584i −0.473456 1.06887i
\(735\) 0 0
\(736\) 32.0611 18.1056i 1.18179 0.667381i
\(737\) −8.94077 −0.329338
\(738\) −9.90522 22.3620i −0.364616 0.823157i
\(739\) 31.3284i 1.15243i −0.817296 0.576217i \(-0.804528\pi\)
0.817296 0.576217i \(-0.195472\pi\)
\(740\) 0 0
\(741\) 0.372073i 0.0136684i
\(742\) −34.2126 + 15.1544i −1.25599 + 0.556337i
\(743\) −44.8723 −1.64621 −0.823103 0.567892i \(-0.807759\pi\)
−0.823103 + 0.567892i \(0.807759\pi\)
\(744\) 0.763795 2.30580i 0.0280021 0.0845348i
\(745\) 0 0
\(746\) 20.9265 9.26936i 0.766174 0.339376i
\(747\) 29.2206i 1.06913i
\(748\) −3.78837 3.43728i −0.138516 0.125679i
\(749\) 33.9936i 1.24210i
\(750\) 0 0
\(751\) 29.7771 1.08658 0.543292 0.839544i \(-0.317178\pi\)
0.543292 + 0.839544i \(0.317178\pi\)
\(752\) −1.82114 18.6962i −0.0664101 0.681779i
\(753\) 4.72489 0.172185
\(754\) 8.76490 + 19.7876i 0.319199 + 0.720623i
\(755\) 0 0
\(756\) 4.99457 + 4.53170i 0.181651 + 0.164816i
\(757\) 33.1452i 1.20468i −0.798239 0.602341i \(-0.794235\pi\)
0.798239 0.602341i \(-0.205765\pi\)
\(758\) 14.1836 6.28260i 0.515171 0.228194i
\(759\) −1.17524 −0.0426584
\(760\) 0 0
\(761\) −14.1986 −0.514699 −0.257350 0.966318i \(-0.582849\pi\)
−0.257350 + 0.966318i \(0.582849\pi\)
\(762\) 1.05149 0.465755i 0.0380914 0.0168725i
\(763\) 12.6767i 0.458929i
\(764\) 18.0641 19.9092i 0.653537 0.720289i
\(765\) 0 0
\(766\) −10.5281 23.7682i −0.380395 0.858779i
\(767\) −25.4247 −0.918034
\(768\) −0.639804 3.25302i −0.0230869 0.117383i
\(769\) 5.12825 0.184930 0.0924648 0.995716i \(-0.470525\pi\)
0.0924648 + 0.995716i \(0.470525\pi\)
\(770\) 0 0
\(771\) 4.70021i 0.169274i
\(772\) −26.9078 + 29.6561i −0.968432 + 1.06735i
\(773\) 1.17666i 0.0423216i 0.999776 + 0.0211608i \(0.00673619\pi\)
−0.999776 + 0.0211608i \(0.993264\pi\)
\(774\) 13.5811 6.01572i 0.488163 0.216231i
\(775\) 0 0
\(776\) 32.7395 + 10.8449i 1.17528 + 0.389310i
\(777\) −0.247247 −0.00886992
\(778\) −39.1119 + 17.3246i −1.40223 + 0.621116i
\(779\) 5.29518i 0.189720i
\(780\) 0 0
\(781\) 11.2568i 0.402801i
\(782\) −10.9425 24.7037i −0.391301 0.883402i
\(783\) −9.52455 −0.340380
\(784\) −0.179458 1.84235i −0.00640920 0.0657981i
\(785\) 0 0
\(786\) −2.00245 4.52072i −0.0714249 0.161249i
\(787\) 0.644823i 0.0229854i −0.999934 0.0114927i \(-0.996342\pi\)
0.999934 0.0114927i \(-0.00365833\pi\)
\(788\) 19.9904 + 18.1378i 0.712128 + 0.646132i
\(789\) 3.10949i 0.110701i
\(790\) 0 0
\(791\) 46.6189 1.65758
\(792\) 2.29171 6.91838i 0.0814322 0.245834i
\(793\) −25.2677 −0.897281
\(794\) −50.5929 + 22.4100i −1.79547 + 0.795302i
\(795\) 0 0
\(796\) 18.9579 20.8942i 0.671944 0.740576i
\(797\) 0.822745i 0.0291431i −0.999894 0.0145716i \(-0.995362\pi\)
0.999894 0.0145716i \(-0.00463844\pi\)
\(798\) −0.293539 0.662695i −0.0103912 0.0234591i
\(799\) −13.7842 −0.487649
\(800\) 0 0
\(801\) −23.7930 −0.840684
\(802\) 5.87684 + 13.2676i 0.207518 + 0.468494i
\(803\) 8.50934i 0.300288i
\(804\) −2.85725 + 3.14909i −0.100767 + 0.111060i
\(805\) 0 0
\(806\) −10.6284 + 4.70782i −0.374368 + 0.165826i
\(807\) −3.18978 −0.112285
\(808\) 4.90438 14.8057i 0.172535 0.520863i
\(809\) −11.5085 −0.404619 −0.202309 0.979322i \(-0.564845\pi\)
−0.202309 + 0.979322i \(0.564845\pi\)
\(810\) 0 0
\(811\) 51.7936i 1.81872i 0.416011 + 0.909360i \(0.363428\pi\)
−0.416011 + 0.909360i \(0.636572\pi\)
\(812\) 31.2221 + 28.3287i 1.09568 + 0.994141i
\(813\) 3.14202i 0.110195i
\(814\) 0.217994 + 0.492143i 0.00764069 + 0.0172496i
\(815\) 0 0
\(816\) −2.42133 + 0.235855i −0.0847636 + 0.00825658i
\(817\) −3.21592 −0.112511
\(818\) −5.97853 13.4971i −0.209035 0.471916i
\(819\) 16.0209i 0.559816i
\(820\) 0 0
\(821\) 1.66017i 0.0579403i −0.999580 0.0289702i \(-0.990777\pi\)
0.999580 0.0289702i \(-0.00922278\pi\)
\(822\) −1.82664 + 0.809106i −0.0637113 + 0.0282208i
\(823\) −33.9444 −1.18323 −0.591613 0.806222i \(-0.701509\pi\)
−0.591613 + 0.806222i \(0.701509\pi\)
\(824\) 13.3867 + 4.43432i 0.466347 + 0.154477i
\(825\) 0 0
\(826\) −45.2837 + 20.0583i −1.57562 + 0.697919i
\(827\) 35.2510i 1.22580i −0.790162 0.612898i \(-0.790004\pi\)
0.790162 0.612898i \(-0.209996\pi\)
\(828\) 25.8669 28.5089i 0.898936 0.990753i
\(829\) 36.8215i 1.27886i −0.768847 0.639432i \(-0.779169\pi\)
0.768847 0.639432i \(-0.220831\pi\)
\(830\) 0 0
\(831\) −2.03252 −0.0705073
\(832\) −9.47187 + 12.7284i −0.328378 + 0.441279i
\(833\) −1.35831 −0.0470627
\(834\) −1.59760 3.60675i −0.0553205 0.124891i
\(835\) 0 0
\(836\) −1.06028 + 1.16858i −0.0366706 + 0.0404161i
\(837\) 5.11584i 0.176829i
\(838\) 47.4039 20.9975i 1.63754 0.725345i
\(839\) 40.2678 1.39020 0.695100 0.718913i \(-0.255360\pi\)
0.695100 + 0.718913i \(0.255360\pi\)
\(840\) 0 0
\(841\) −30.5401 −1.05311
\(842\) −13.4567 + 5.96062i −0.463748 + 0.205417i
\(843\) 0.708570i 0.0244044i
\(844\) −19.4561 17.6530i −0.669707 0.607642i
\(845\) 0 0
\(846\) −7.95371 17.9563i −0.273454 0.617350i
\(847\) −27.9756 −0.961253
\(848\) 38.5597 3.75599i 1.32414 0.128981i
\(849\) 5.08627 0.174560
\(850\) 0 0
\(851\) 2.84305i 0.0974585i
\(852\) 3.96484 + 3.59740i 0.135833 + 0.123245i
\(853\) 52.0753i 1.78302i 0.452997 + 0.891512i \(0.350355\pi\)
−0.452997 + 0.891512i \(0.649645\pi\)
\(854\) −45.0040 + 19.9344i −1.54000 + 0.682142i
\(855\) 0 0
\(856\) −11.0672 + 33.4106i −0.378270 + 1.14195i
\(857\) 48.7275 1.66450 0.832250 0.554400i \(-0.187052\pi\)
0.832250 + 0.554400i \(0.187052\pi\)
\(858\) 0.463024 0.205096i 0.0158074 0.00700185i
\(859\) 34.8415i 1.18878i −0.804178 0.594389i \(-0.797394\pi\)
0.804178 0.594389i \(-0.202606\pi\)
\(860\) 0 0
\(861\) 3.31051i 0.112822i
\(862\) 5.94895 + 13.4303i 0.202622 + 0.457439i
\(863\) −14.8198 −0.504473 −0.252237 0.967666i \(-0.581166\pi\)
−0.252237 + 0.967666i \(0.581166\pi\)
\(864\) −3.43353 6.08005i −0.116811 0.206848i
\(865\) 0 0
\(866\) −4.01729 9.06943i −0.136513 0.308192i
\(867\) 1.73736i 0.0590039i
\(868\) −15.2159 + 16.7701i −0.516462 + 0.569214i
\(869\) 2.63310i 0.0893218i
\(870\) 0 0
\(871\) 20.3491 0.689504
\(872\) −4.12714 + 12.4593i −0.139763 + 0.421926i
\(873\) 36.0575 1.22036
\(874\) −7.62022 + 3.37536i −0.257758 + 0.114173i
\(875\) 0 0
\(876\) 2.99713 + 2.71937i 0.101264 + 0.0918791i
\(877\) 5.24283i 0.177038i −0.996074 0.0885189i \(-0.971787\pi\)
0.996074 0.0885189i \(-0.0282134\pi\)
\(878\) 1.94886 + 4.39975i 0.0657709 + 0.148484i
\(879\) 4.75590 0.160413
\(880\) 0 0
\(881\) −24.2313 −0.816374 −0.408187 0.912898i \(-0.633839\pi\)
−0.408187 + 0.912898i \(0.633839\pi\)
\(882\) −0.783769 1.76944i −0.0263909 0.0595801i
\(883\) 40.7796i 1.37234i 0.727439 + 0.686172i \(0.240710\pi\)
−0.727439 + 0.686172i \(0.759290\pi\)
\(884\) 8.62229 + 7.82322i 0.289999 + 0.263123i
\(885\) 0 0
\(886\) −18.2451 + 8.08166i −0.612958 + 0.271509i
\(887\) −4.68906 −0.157443 −0.0787216 0.996897i \(-0.525084\pi\)
−0.0787216 + 0.996897i \(0.525084\pi\)
\(888\) 0.243006 + 0.0804956i 0.00815476 + 0.00270126i
\(889\) −10.7210 −0.359570
\(890\) 0 0
\(891\) 7.50729i 0.251504i
\(892\) −0.966075 + 1.06475i −0.0323466 + 0.0356505i
\(893\) 4.25194i 0.142286i
\(894\) −2.32827 5.25629i −0.0778689 0.175797i
\(895\) 0 0
\(896\) −6.82840 + 30.1431i −0.228121 + 1.00701i
\(897\) 2.67483 0.0893100
\(898\) 10.8798 + 24.5622i 0.363064 + 0.819652i
\(899\) 31.9802i 1.06660i
\(900\) 0 0
\(901\) 28.4290i 0.947108i
\(902\) −6.58956 + 2.91883i −0.219408 + 0.0971865i
\(903\) 2.01057 0.0669076
\(904\) −45.8193 15.1776i −1.52393 0.504800i
\(905\) 0 0
\(906\) −5.85834 + 2.59494i −0.194630 + 0.0862111i
\(907\) 3.54602i 0.117744i 0.998266 + 0.0588718i \(0.0187503\pi\)
−0.998266 + 0.0588718i \(0.981250\pi\)
\(908\) 17.8797 + 16.2227i 0.593359 + 0.538370i
\(909\) 16.3062i 0.540843i
\(910\) 0 0
\(911\) 24.9437 0.826420 0.413210 0.910636i \(-0.364407\pi\)
0.413210 + 0.910636i \(0.364407\pi\)
\(912\) 0.0727530 + 0.746896i 0.00240909 + 0.0247322i
\(913\) 8.61063 0.284970
\(914\) −16.2117 36.5996i −0.536236 1.21061i
\(915\) 0 0
\(916\) 15.3167 + 13.8972i 0.506077 + 0.459177i
\(917\) 46.0933i 1.52213i
\(918\) −4.68479 + 2.07512i −0.154621 + 0.0684892i
\(919\) −4.92584 −0.162488 −0.0812442 0.996694i \(-0.525889\pi\)
−0.0812442 + 0.996694i \(0.525889\pi\)
\(920\) 0 0
\(921\) 0.479030 0.0157846
\(922\) −14.5566 + 6.44781i −0.479395 + 0.212347i
\(923\) 25.6205i 0.843308i
\(924\) 0.662880 0.730587i 0.0218072 0.0240345i
\(925\) 0 0
\(926\) 0.639560 + 1.44387i 0.0210172 + 0.0474485i
\(927\) 14.7434 0.484235
\(928\) −21.4638 38.0077i −0.704583 1.24767i
\(929\) −39.6646 −1.30135 −0.650677 0.759354i \(-0.725515\pi\)
−0.650677 + 0.759354i \(0.725515\pi\)
\(930\) 0 0
\(931\) 0.418991i 0.0137319i
\(932\) −5.41995 + 5.97354i −0.177536 + 0.195670i
\(933\) 0.0825014i 0.00270097i
\(934\) 1.73909 0.770328i 0.0569048 0.0252059i
\(935\) 0 0
\(936\) −5.21590 + 15.7462i −0.170487 + 0.514679i
\(937\) 31.3308 1.02353 0.511767 0.859125i \(-0.328991\pi\)
0.511767 + 0.859125i \(0.328991\pi\)
\(938\) 36.2436 16.0540i 1.18340 0.524183i
\(939\) 5.75824i 0.187913i
\(940\) 0 0
\(941\) 13.1179i 0.427630i −0.976874 0.213815i \(-0.931411\pi\)
0.976874 0.213815i \(-0.0685889\pi\)
\(942\) −0.633916 1.43113i −0.0206541 0.0466287i
\(943\) −38.0671 −1.23963
\(944\) 51.0374 4.97141i 1.66113 0.161806i
\(945\) 0 0
\(946\) −1.77269 4.00203i −0.0576352 0.130117i
\(947\) 32.0477i 1.04141i 0.853737 + 0.520705i \(0.174331\pi\)
−0.853737 + 0.520705i \(0.825669\pi\)
\(948\) −0.927421 0.841473i −0.0301212 0.0273298i
\(949\) 19.3672i 0.628686i
\(950\) 0 0
\(951\) −3.46441 −0.112341
\(952\) 21.5290 + 7.13147i 0.697760 + 0.231132i
\(953\) −33.0115 −1.06935 −0.534674 0.845059i \(-0.679565\pi\)
−0.534674 + 0.845059i \(0.679565\pi\)
\(954\) 37.0337 16.4040i 1.19901 0.531100i
\(955\) 0 0
\(956\) 15.7597 17.3694i 0.509706 0.561767i
\(957\) 1.39322i 0.0450363i
\(958\) −15.0164 33.9011i −0.485159 1.09530i
\(959\) 18.6244 0.601413
\(960\) 0 0
\(961\) −13.8227 −0.445894
\(962\) −0.496152 1.12011i −0.0159966 0.0361139i
\(963\) 36.7967i 1.18576i
\(964\) −17.1614 + 18.9142i −0.552731 + 0.609186i
\(965\) 0 0
\(966\) 4.76411 2.11025i 0.153283 0.0678963i
\(967\) 58.2596 1.87350 0.936751 0.349995i \(-0.113817\pi\)
0.936751 + 0.349995i \(0.113817\pi\)
\(968\) 27.4958 + 9.10797i 0.883749 + 0.292741i
\(969\) 0.550666 0.0176900
\(970\) 0 0
\(971\) 25.2784i 0.811223i 0.914046 + 0.405612i \(0.132941\pi\)
−0.914046 + 0.405612i \(0.867059\pi\)
\(972\) −8.12910 7.37574i −0.260741 0.236577i
\(973\) 36.7744i 1.17893i
\(974\) −7.03235 15.8762i −0.225331 0.508707i
\(975\) 0 0
\(976\) 50.7222 4.94070i 1.62358 0.158148i
\(977\) −17.7917 −0.569207 −0.284604 0.958645i \(-0.591862\pi\)
−0.284604 + 0.958645i \(0.591862\pi\)
\(978\) 2.07304 + 4.68009i 0.0662885 + 0.149653i
\(979\) 7.01124i 0.224080i
\(980\) 0 0
\(981\) 13.7220i 0.438111i
\(982\) 41.7721 18.5029i 1.33300 0.590450i
\(983\) −33.3339 −1.06319 −0.531594 0.846999i \(-0.678407\pi\)
−0.531594 + 0.846999i \(0.678407\pi\)
\(984\) −1.07780 + 3.25374i −0.0343589 + 0.103725i
\(985\) 0 0
\(986\) −29.2856 + 12.9720i −0.932645 + 0.413113i
\(987\) 2.65828i 0.0846140i
\(988\) 2.41319 2.65967i 0.0767738 0.0846154i
\(989\) 23.1192i 0.735149i
\(990\) 0 0
\(991\) −21.9753 −0.698069 −0.349034 0.937110i \(-0.613490\pi\)
−0.349034 + 0.937110i \(0.613490\pi\)
\(992\) 20.4148 11.5287i 0.648170 0.366035i
\(993\) −2.64896 −0.0840622
\(994\) −20.2128 45.6323i −0.641110 1.44737i
\(995\) 0 0
\(996\) 2.75174 3.03281i 0.0871923 0.0960981i
\(997\) 42.6450i 1.35058i −0.737553 0.675290i \(-0.764019\pi\)
0.737553 0.675290i \(-0.235981\pi\)
\(998\) 7.94004 3.51703i 0.251337 0.111330i
\(999\) 0.539154 0.0170581
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1000.2.d.c.501.15 40
4.3 odd 2 4000.2.d.c.2001.11 40
5.2 odd 4 1000.2.f.c.749.17 20
5.3 odd 4 1000.2.f.d.749.4 20
5.4 even 2 inner 1000.2.d.c.501.26 yes 40
8.3 odd 2 4000.2.d.c.2001.12 40
8.5 even 2 inner 1000.2.d.c.501.16 yes 40
20.3 even 4 4000.2.f.d.3249.9 20
20.7 even 4 4000.2.f.c.3249.12 20
20.19 odd 2 4000.2.d.c.2001.30 40
40.3 even 4 4000.2.f.c.3249.11 20
40.13 odd 4 1000.2.f.c.749.18 20
40.19 odd 2 4000.2.d.c.2001.29 40
40.27 even 4 4000.2.f.d.3249.10 20
40.29 even 2 inner 1000.2.d.c.501.25 yes 40
40.37 odd 4 1000.2.f.d.749.3 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1000.2.d.c.501.15 40 1.1 even 1 trivial
1000.2.d.c.501.16 yes 40 8.5 even 2 inner
1000.2.d.c.501.25 yes 40 40.29 even 2 inner
1000.2.d.c.501.26 yes 40 5.4 even 2 inner
1000.2.f.c.749.17 20 5.2 odd 4
1000.2.f.c.749.18 20 40.13 odd 4
1000.2.f.d.749.3 20 40.37 odd 4
1000.2.f.d.749.4 20 5.3 odd 4
4000.2.d.c.2001.11 40 4.3 odd 2
4000.2.d.c.2001.12 40 8.3 odd 2
4000.2.d.c.2001.29 40 40.19 odd 2
4000.2.d.c.2001.30 40 20.19 odd 2
4000.2.f.c.3249.11 20 40.3 even 4
4000.2.f.c.3249.12 20 20.7 even 4
4000.2.f.d.3249.9 20 20.3 even 4
4000.2.f.d.3249.10 20 40.27 even 4