L(s) = 1 | + (−0.587 − 0.809i)3-s + (−0.309 + 0.951i)5-s − 0.618i·7-s + (−0.190 + 0.587i)13-s + (0.951 − 0.309i)15-s + (0.951 − 1.30i)19-s + (−0.500 + 0.363i)21-s + (0.951 − 0.309i)23-s + (−0.809 − 0.587i)25-s + (−0.951 + 0.309i)27-s + (1.30 − 0.951i)29-s + (−0.587 + 0.809i)31-s + (0.587 + 0.190i)35-s + (0.309 − 0.951i)37-s + (0.587 − 0.190i)39-s + ⋯ |
L(s) = 1 | + (−0.587 − 0.809i)3-s + (−0.309 + 0.951i)5-s − 0.618i·7-s + (−0.190 + 0.587i)13-s + (0.951 − 0.309i)15-s + (0.951 − 1.30i)19-s + (−0.500 + 0.363i)21-s + (0.951 − 0.309i)23-s + (−0.809 − 0.587i)25-s + (−0.951 + 0.309i)27-s + (1.30 − 0.951i)29-s + (−0.587 + 0.809i)31-s + (0.587 + 0.190i)35-s + (0.309 − 0.951i)37-s + (0.587 − 0.190i)39-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.368 + 0.929i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.368 + 0.929i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.8398855740\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.8398855740\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (0.309 - 0.951i)T \) |
good | 3 | \( 1 + (0.587 + 0.809i)T + (-0.309 + 0.951i)T^{2} \) |
| 7 | \( 1 + 0.618iT - T^{2} \) |
| 11 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 13 | \( 1 + (0.190 - 0.587i)T + (-0.809 - 0.587i)T^{2} \) |
| 17 | \( 1 + (0.309 + 0.951i)T^{2} \) |
| 19 | \( 1 + (-0.951 + 1.30i)T + (-0.309 - 0.951i)T^{2} \) |
| 23 | \( 1 + (-0.951 + 0.309i)T + (0.809 - 0.587i)T^{2} \) |
| 29 | \( 1 + (-1.30 + 0.951i)T + (0.309 - 0.951i)T^{2} \) |
| 31 | \( 1 + (0.587 - 0.809i)T + (-0.309 - 0.951i)T^{2} \) |
| 37 | \( 1 + (-0.309 + 0.951i)T + (-0.809 - 0.587i)T^{2} \) |
| 41 | \( 1 + (-0.809 - 0.587i)T^{2} \) |
| 43 | \( 1 + 1.61iT - T^{2} \) |
| 47 | \( 1 + (0.363 + 0.5i)T + (-0.309 + 0.951i)T^{2} \) |
| 53 | \( 1 + (0.809 - 0.587i)T + (0.309 - 0.951i)T^{2} \) |
| 59 | \( 1 + (-1.53 - 0.5i)T + (0.809 + 0.587i)T^{2} \) |
| 61 | \( 1 + (0.309 + 0.951i)T + (-0.809 + 0.587i)T^{2} \) |
| 67 | \( 1 + (-0.309 - 0.951i)T^{2} \) |
| 71 | \( 1 + (-0.363 - 0.5i)T + (-0.309 + 0.951i)T^{2} \) |
| 73 | \( 1 + (-0.309 - 0.951i)T + (-0.809 + 0.587i)T^{2} \) |
| 79 | \( 1 + (0.951 + 1.30i)T + (-0.309 + 0.951i)T^{2} \) |
| 83 | \( 1 + (0.587 - 0.809i)T + (-0.309 - 0.951i)T^{2} \) |
| 89 | \( 1 + (-0.809 + 0.587i)T^{2} \) |
| 97 | \( 1 + (-0.5 + 0.363i)T + (0.309 - 0.951i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.521867148370727658243742037445, −8.595823714532381180555686933365, −7.36964491718163959748907770483, −7.09194443256375601558206659818, −6.53274409577203277470058497460, −5.50011382813438281639614260636, −4.41364455571503391694933072613, −3.40048980547358237103845485568, −2.32745217497129139081008180874, −0.810968582850708200782224513428,
1.35817696112181883502391481191, 2.97841933972140303446279061096, 4.03286646745425696811016095452, 5.02539183658707146599799327079, 5.32959474685605602911565120298, 6.25236653853839616776583536915, 7.60678883117688226848152681318, 8.166007018244835889792040129004, 9.093988772961717591560050547608, 9.769404273756052486963282669916