L(s) = 1 | + (−0.587 − 0.809i)3-s + (−0.309 + 0.951i)5-s − 0.618i·7-s + (−0.190 + 0.587i)13-s + (0.951 − 0.309i)15-s + (0.951 − 1.30i)19-s + (−0.500 + 0.363i)21-s + (0.951 − 0.309i)23-s + (−0.809 − 0.587i)25-s + (−0.951 + 0.309i)27-s + (1.30 − 0.951i)29-s + (−0.587 + 0.809i)31-s + (0.587 + 0.190i)35-s + (0.309 − 0.951i)37-s + (0.587 − 0.190i)39-s + ⋯ |
L(s) = 1 | + (−0.587 − 0.809i)3-s + (−0.309 + 0.951i)5-s − 0.618i·7-s + (−0.190 + 0.587i)13-s + (0.951 − 0.309i)15-s + (0.951 − 1.30i)19-s + (−0.500 + 0.363i)21-s + (0.951 − 0.309i)23-s + (−0.809 − 0.587i)25-s + (−0.951 + 0.309i)27-s + (1.30 − 0.951i)29-s + (−0.587 + 0.809i)31-s + (0.587 + 0.190i)35-s + (0.309 − 0.951i)37-s + (0.587 − 0.190i)39-s + ⋯ |
Λ(s)=(=(1600s/2ΓC(s)L(s)(0.368+0.929i)Λ(1−s)
Λ(s)=(=(1600s/2ΓC(s)L(s)(0.368+0.929i)Λ(1−s)
Degree: |
2 |
Conductor: |
1600
= 26⋅52
|
Sign: |
0.368+0.929i
|
Analytic conductor: |
0.798504 |
Root analytic conductor: |
0.893590 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1600(831,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1600, ( :0), 0.368+0.929i)
|
Particular Values
L(21) |
≈ |
0.8398855740 |
L(21) |
≈ |
0.8398855740 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1+(0.309−0.951i)T |
good | 3 | 1+(0.587+0.809i)T+(−0.309+0.951i)T2 |
| 7 | 1+0.618iT−T2 |
| 11 | 1+(0.809−0.587i)T2 |
| 13 | 1+(0.190−0.587i)T+(−0.809−0.587i)T2 |
| 17 | 1+(0.309+0.951i)T2 |
| 19 | 1+(−0.951+1.30i)T+(−0.309−0.951i)T2 |
| 23 | 1+(−0.951+0.309i)T+(0.809−0.587i)T2 |
| 29 | 1+(−1.30+0.951i)T+(0.309−0.951i)T2 |
| 31 | 1+(0.587−0.809i)T+(−0.309−0.951i)T2 |
| 37 | 1+(−0.309+0.951i)T+(−0.809−0.587i)T2 |
| 41 | 1+(−0.809−0.587i)T2 |
| 43 | 1+1.61iT−T2 |
| 47 | 1+(0.363+0.5i)T+(−0.309+0.951i)T2 |
| 53 | 1+(0.809−0.587i)T+(0.309−0.951i)T2 |
| 59 | 1+(−1.53−0.5i)T+(0.809+0.587i)T2 |
| 61 | 1+(0.309+0.951i)T+(−0.809+0.587i)T2 |
| 67 | 1+(−0.309−0.951i)T2 |
| 71 | 1+(−0.363−0.5i)T+(−0.309+0.951i)T2 |
| 73 | 1+(−0.309−0.951i)T+(−0.809+0.587i)T2 |
| 79 | 1+(0.951+1.30i)T+(−0.309+0.951i)T2 |
| 83 | 1+(0.587−0.809i)T+(−0.309−0.951i)T2 |
| 89 | 1+(−0.809+0.587i)T2 |
| 97 | 1+(−0.5+0.363i)T+(0.309−0.951i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.521867148370727658243742037445, −8.595823714532381180555686933365, −7.36964491718163959748907770483, −7.09194443256375601558206659818, −6.53274409577203277470058497460, −5.50011382813438281639614260636, −4.41364455571503391694933072613, −3.40048980547358237103845485568, −2.32745217497129139081008180874, −0.810968582850708200782224513428,
1.35817696112181883502391481191, 2.97841933972140303446279061096, 4.03286646745425696811016095452, 5.02539183658707146599799327079, 5.32959474685605602911565120298, 6.25236653853839616776583536915, 7.60678883117688226848152681318, 8.166007018244835889792040129004, 9.093988772961717591560050547608, 9.769404273756052486963282669916