L(s) = 1 | + (−0.951 + 0.309i)3-s + (0.809 − 0.587i)5-s + 1.61i·7-s + (−1.30 + 0.951i)13-s + (−0.587 + 0.809i)15-s + (−0.587 − 0.190i)19-s + (−0.500 − 1.53i)21-s + (−0.587 + 0.809i)23-s + (0.309 − 0.951i)25-s + (0.587 − 0.809i)27-s + (0.190 + 0.587i)29-s + (−0.951 − 0.309i)31-s + (0.951 + 1.30i)35-s + (−0.809 + 0.587i)37-s + (0.951 − 1.30i)39-s + ⋯ |
L(s) = 1 | + (−0.951 + 0.309i)3-s + (0.809 − 0.587i)5-s + 1.61i·7-s + (−1.30 + 0.951i)13-s + (−0.587 + 0.809i)15-s + (−0.587 − 0.190i)19-s + (−0.500 − 1.53i)21-s + (−0.587 + 0.809i)23-s + (0.309 − 0.951i)25-s + (0.587 − 0.809i)27-s + (0.190 + 0.587i)29-s + (−0.951 − 0.309i)31-s + (0.951 + 1.30i)35-s + (−0.809 + 0.587i)37-s + (0.951 − 1.30i)39-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.481 - 0.876i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.481 - 0.876i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.6292167620\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.6292167620\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (-0.809 + 0.587i)T \) |
good | 3 | \( 1 + (0.951 - 0.309i)T + (0.809 - 0.587i)T^{2} \) |
| 7 | \( 1 - 1.61iT - T^{2} \) |
| 11 | \( 1 + (-0.309 - 0.951i)T^{2} \) |
| 13 | \( 1 + (1.30 - 0.951i)T + (0.309 - 0.951i)T^{2} \) |
| 17 | \( 1 + (-0.809 - 0.587i)T^{2} \) |
| 19 | \( 1 + (0.587 + 0.190i)T + (0.809 + 0.587i)T^{2} \) |
| 23 | \( 1 + (0.587 - 0.809i)T + (-0.309 - 0.951i)T^{2} \) |
| 29 | \( 1 + (-0.190 - 0.587i)T + (-0.809 + 0.587i)T^{2} \) |
| 31 | \( 1 + (0.951 + 0.309i)T + (0.809 + 0.587i)T^{2} \) |
| 37 | \( 1 + (0.809 - 0.587i)T + (0.309 - 0.951i)T^{2} \) |
| 41 | \( 1 + (0.309 - 0.951i)T^{2} \) |
| 43 | \( 1 - 0.618iT - T^{2} \) |
| 47 | \( 1 + (-1.53 + 0.5i)T + (0.809 - 0.587i)T^{2} \) |
| 53 | \( 1 + (-0.309 - 0.951i)T + (-0.809 + 0.587i)T^{2} \) |
| 59 | \( 1 + (-0.363 - 0.5i)T + (-0.309 + 0.951i)T^{2} \) |
| 61 | \( 1 + (-0.809 - 0.587i)T + (0.309 + 0.951i)T^{2} \) |
| 67 | \( 1 + (0.809 + 0.587i)T^{2} \) |
| 71 | \( 1 + (1.53 - 0.5i)T + (0.809 - 0.587i)T^{2} \) |
| 73 | \( 1 + (0.809 + 0.587i)T + (0.309 + 0.951i)T^{2} \) |
| 79 | \( 1 + (-0.587 + 0.190i)T + (0.809 - 0.587i)T^{2} \) |
| 83 | \( 1 + (0.951 + 0.309i)T + (0.809 + 0.587i)T^{2} \) |
| 89 | \( 1 + (0.309 + 0.951i)T^{2} \) |
| 97 | \( 1 + (-0.5 - 1.53i)T + (-0.809 + 0.587i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.838088196271625464117919703082, −9.025815959157027317747516900662, −8.669052122839764660360191335202, −7.35898576839707447428980619559, −6.29977771566192042382548132901, −5.65520188947811627115000272402, −5.16146807250773369423992958735, −4.37787100980143940373335555199, −2.63601913108886195616824733752, −1.88760119127643573341215305044,
0.52204646233237342968962369278, 2.07436226681351332262030798644, 3.30988391685286884074583068171, 4.42592180628927913427954571332, 5.41737684590961161715778816135, 6.08015600499275755730860184357, 7.08423195379189921771599361265, 7.26163154048967855301474884764, 8.470376387066196046239116137976, 9.676063369975670327358227614116