L(s) = 1 | + (−0.190 + 0.587i)3-s + (−0.951 − 0.309i)5-s − i·7-s + (0.5 + 0.363i)9-s + (0.809 − 0.587i)11-s + (−0.587 + 0.809i)13-s + (0.363 − 0.5i)15-s + (−0.190 − 0.587i)17-s + (−0.5 − 1.53i)19-s + (0.587 + 0.190i)21-s + (−0.587 − 0.809i)23-s + (0.809 + 0.587i)25-s + (−0.809 + 0.587i)27-s + (0.951 + 0.309i)29-s + (0.951 − 0.309i)31-s + ⋯ |
L(s) = 1 | + (−0.190 + 0.587i)3-s + (−0.951 − 0.309i)5-s − i·7-s + (0.5 + 0.363i)9-s + (0.809 − 0.587i)11-s + (−0.587 + 0.809i)13-s + (0.363 − 0.5i)15-s + (−0.190 − 0.587i)17-s + (−0.5 − 1.53i)19-s + (0.587 + 0.190i)21-s + (−0.587 − 0.809i)23-s + (0.809 + 0.587i)25-s + (−0.809 + 0.587i)27-s + (0.951 + 0.309i)29-s + (0.951 − 0.309i)31-s + ⋯ |
Λ(s)=(=(1600s/2ΓC(s)L(s)(0.790+0.612i)Λ(1−s)
Λ(s)=(=(1600s/2ΓC(s)L(s)(0.790+0.612i)Λ(1−s)
Degree: |
2 |
Conductor: |
1600
= 26⋅52
|
Sign: |
0.790+0.612i
|
Analytic conductor: |
0.798504 |
Root analytic conductor: |
0.893590 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1600(1311,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1600, ( :0), 0.790+0.612i)
|
Particular Values
L(21) |
≈ |
0.8790973703 |
L(21) |
≈ |
0.8790973703 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1+(0.951+0.309i)T |
good | 3 | 1+(0.190−0.587i)T+(−0.809−0.587i)T2 |
| 7 | 1+iT−T2 |
| 11 | 1+(−0.809+0.587i)T+(0.309−0.951i)T2 |
| 13 | 1+(0.587−0.809i)T+(−0.309−0.951i)T2 |
| 17 | 1+(0.190+0.587i)T+(−0.809+0.587i)T2 |
| 19 | 1+(0.5+1.53i)T+(−0.809+0.587i)T2 |
| 23 | 1+(0.587+0.809i)T+(−0.309+0.951i)T2 |
| 29 | 1+(−0.951−0.309i)T+(0.809+0.587i)T2 |
| 31 | 1+(−0.951+0.309i)T+(0.809−0.587i)T2 |
| 37 | 1+(−0.951+1.30i)T+(−0.309−0.951i)T2 |
| 41 | 1+(0.809+0.587i)T+(0.309+0.951i)T2 |
| 43 | 1−T+T2 |
| 47 | 1+(−0.951−0.309i)T+(0.809+0.587i)T2 |
| 53 | 1+(0.809+0.587i)T2 |
| 59 | 1+(0.309+0.951i)T2 |
| 61 | 1+(−0.363−0.5i)T+(−0.309+0.951i)T2 |
| 67 | 1+(0.309+0.951i)T+(−0.809+0.587i)T2 |
| 71 | 1+(0.951+0.309i)T+(0.809+0.587i)T2 |
| 73 | 1+(0.309−0.951i)T2 |
| 79 | 1+(0.809+0.587i)T2 |
| 83 | 1+(−0.309−0.951i)T+(−0.809+0.587i)T2 |
| 89 | 1+(0.309−0.951i)T2 |
| 97 | 1+(0.5−1.53i)T+(−0.809−0.587i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.384386592226789053726971748527, −8.906248548653584937728424893625, −7.84710650641998997001473933154, −7.11474946581388964399105293778, −6.52347748400643249944356308688, −5.05189164040826793547765312932, −4.22332973359119128743363745230, −4.10406886351164268100080291185, −2.57799399665655814024056689356, −0.798171941341680296420044569896,
1.41812033966594888991899230291, 2.65812602483812358060101301225, 3.80547869412704237945039475921, 4.56495705478741003235026362961, 5.88710288014835531906135789299, 6.42956243227564473999446142045, 7.34599149209054378889615897648, 8.036949970493345011302227447105, 8.663252638993537674353055199584, 9.872419593208841336675240633690