L(s) = 1 | + (0.866 + 1.5i)3-s + 3.46i·5-s + (2.59 + 1.5i)7-s + (−4.33 + 2.5i)11-s + (−1 − 3.46i)13-s + (−5.19 + 2.99i)15-s + (3.5 − 6.06i)17-s + (−4.33 − 2.5i)19-s + 5.19i·21-s + (2.59 + 4.5i)23-s − 6.99·25-s + 5.19·27-s + (2.5 + 4.33i)29-s + 2i·31-s + (−7.5 − 4.33i)33-s + ⋯ |
L(s) = 1 | + (0.499 + 0.866i)3-s + 1.54i·5-s + (0.981 + 0.566i)7-s + (−1.30 + 0.753i)11-s + (−0.277 − 0.960i)13-s + (−1.34 + 0.774i)15-s + (0.848 − 1.47i)17-s + (−0.993 − 0.573i)19-s + 1.13i·21-s + (0.541 + 0.938i)23-s − 1.39·25-s + 1.00·27-s + (0.464 + 0.804i)29-s + 0.359i·31-s + (−1.30 − 0.753i)33-s + ⋯ |
Λ(s)=(=(416s/2ΓC(s)L(s)(−0.265−0.964i)Λ(2−s)
Λ(s)=(=(416s/2ΓC(s+1/2)L(s)(−0.265−0.964i)Λ(1−s)
Degree: |
2 |
Conductor: |
416
= 25⋅13
|
Sign: |
−0.265−0.964i
|
Analytic conductor: |
3.32177 |
Root analytic conductor: |
1.82257 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ416(257,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 416, ( :1/2), −0.265−0.964i)
|
Particular Values
L(1) |
≈ |
1.00432+1.31759i |
L(21) |
≈ |
1.00432+1.31759i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 13 | 1+(1+3.46i)T |
good | 3 | 1+(−0.866−1.5i)T+(−1.5+2.59i)T2 |
| 5 | 1−3.46iT−5T2 |
| 7 | 1+(−2.59−1.5i)T+(3.5+6.06i)T2 |
| 11 | 1+(4.33−2.5i)T+(5.5−9.52i)T2 |
| 17 | 1+(−3.5+6.06i)T+(−8.5−14.7i)T2 |
| 19 | 1+(4.33+2.5i)T+(9.5+16.4i)T2 |
| 23 | 1+(−2.59−4.5i)T+(−11.5+19.9i)T2 |
| 29 | 1+(−2.5−4.33i)T+(−14.5+25.1i)T2 |
| 31 | 1−2iT−31T2 |
| 37 | 1+(−4.5+2.59i)T+(18.5−32.0i)T2 |
| 41 | 1+(1.5−0.866i)T+(20.5−35.5i)T2 |
| 43 | 1+(−2.59+4.5i)T+(−21.5−37.2i)T2 |
| 47 | 1−4iT−47T2 |
| 53 | 1−4T+53T2 |
| 59 | 1+(−6.06−3.5i)T+(29.5+51.0i)T2 |
| 61 | 1+(1.5−2.59i)T+(−30.5−52.8i)T2 |
| 67 | 1+(2.59−1.5i)T+(33.5−58.0i)T2 |
| 71 | 1+(6.06+3.5i)T+(35.5+61.4i)T2 |
| 73 | 1−3.46iT−73T2 |
| 79 | 1+3.46T+79T2 |
| 83 | 1+14iT−83T2 |
| 89 | 1+(−1.5+0.866i)T+(44.5−77.0i)T2 |
| 97 | 1+(−7.5−4.33i)T+(48.5+84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.18730186715297796826659150158, −10.45289529232732521623226162730, −9.922392955102943269953430468258, −8.830804606247835746766407911564, −7.67431865783985467018022019400, −7.09480649625657389865806807161, −5.51169308262128402487868568562, −4.69551890972061568647975851003, −3.13280708837345839580850573153, −2.54894164571844234500184399434,
1.11471873287324465725549016299, 2.20001653520271263739376382071, 4.19300724258586834100372526043, 4.99253488121029589828855222896, 6.18570872055557231223196832515, 7.65184186003859798424435421020, 8.252334559306368302886744114880, 8.592667418902307145411061986442, 10.08894683545246689525724414725, 10.94908538175983714923386239358