L(s) = 1 | + (0.866 + 1.5i)3-s + 3.46i·5-s + (2.59 + 1.5i)7-s + (−4.33 + 2.5i)11-s + (−1 − 3.46i)13-s + (−5.19 + 2.99i)15-s + (3.5 − 6.06i)17-s + (−4.33 − 2.5i)19-s + 5.19i·21-s + (2.59 + 4.5i)23-s − 6.99·25-s + 5.19·27-s + (2.5 + 4.33i)29-s + 2i·31-s + (−7.5 − 4.33i)33-s + ⋯ |
L(s) = 1 | + (0.499 + 0.866i)3-s + 1.54i·5-s + (0.981 + 0.566i)7-s + (−1.30 + 0.753i)11-s + (−0.277 − 0.960i)13-s + (−1.34 + 0.774i)15-s + (0.848 − 1.47i)17-s + (−0.993 − 0.573i)19-s + 1.13i·21-s + (0.541 + 0.938i)23-s − 1.39·25-s + 1.00·27-s + (0.464 + 0.804i)29-s + 0.359i·31-s + (−1.30 − 0.753i)33-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 416 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.265 - 0.964i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 416 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.265 - 0.964i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.00432 + 1.31759i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.00432 + 1.31759i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 13 | \( 1 + (1 + 3.46i)T \) |
good | 3 | \( 1 + (-0.866 - 1.5i)T + (-1.5 + 2.59i)T^{2} \) |
| 5 | \( 1 - 3.46iT - 5T^{2} \) |
| 7 | \( 1 + (-2.59 - 1.5i)T + (3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (4.33 - 2.5i)T + (5.5 - 9.52i)T^{2} \) |
| 17 | \( 1 + (-3.5 + 6.06i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (4.33 + 2.5i)T + (9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (-2.59 - 4.5i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-2.5 - 4.33i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 - 2iT - 31T^{2} \) |
| 37 | \( 1 + (-4.5 + 2.59i)T + (18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (1.5 - 0.866i)T + (20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-2.59 + 4.5i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 - 4iT - 47T^{2} \) |
| 53 | \( 1 - 4T + 53T^{2} \) |
| 59 | \( 1 + (-6.06 - 3.5i)T + (29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (1.5 - 2.59i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (2.59 - 1.5i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (6.06 + 3.5i)T + (35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 - 3.46iT - 73T^{2} \) |
| 79 | \( 1 + 3.46T + 79T^{2} \) |
| 83 | \( 1 + 14iT - 83T^{2} \) |
| 89 | \( 1 + (-1.5 + 0.866i)T + (44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (-7.5 - 4.33i)T + (48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.18730186715297796826659150158, −10.45289529232732521623226162730, −9.922392955102943269953430468258, −8.830804606247835746766407911564, −7.67431865783985467018022019400, −7.09480649625657389865806807161, −5.51169308262128402487868568562, −4.69551890972061568647975851003, −3.13280708837345839580850573153, −2.54894164571844234500184399434,
1.11471873287324465725549016299, 2.20001653520271263739376382071, 4.19300724258586834100372526043, 4.99253488121029589828855222896, 6.18570872055557231223196832515, 7.65184186003859798424435421020, 8.252334559306368302886744114880, 8.592667418902307145411061986442, 10.08894683545246689525724414725, 10.94908538175983714923386239358