L(s) = 1 | + (1.65 + 2.87i)3-s + (1.65 − 2.87i)7-s + (−4 + 6.92i)9-s + (1.65 + 2.87i)11-s + (−1 + 3.46i)13-s + (1.5 − 2.59i)17-s + (1.65 − 2.87i)19-s + 11·21-s + (−1.65 − 2.87i)23-s − 5·25-s − 16.5·27-s + (2.5 + 4.33i)29-s + (−5.5 + 9.52i)33-s + (−4.5 − 7.79i)37-s + (−11.6 + 2.87i)39-s + ⋯ |
L(s) = 1 | + (0.957 + 1.65i)3-s + (0.626 − 1.08i)7-s + (−1.33 + 2.30i)9-s + (0.500 + 0.866i)11-s + (−0.277 + 0.960i)13-s + (0.363 − 0.630i)17-s + (0.380 − 0.658i)19-s + 2.40·21-s + (−0.345 − 0.598i)23-s − 25-s − 3.19·27-s + (0.464 + 0.804i)29-s + (−0.957 + 1.65i)33-s + (−0.739 − 1.28i)37-s + (−1.85 + 0.459i)39-s + ⋯ |
Λ(s)=(=(416s/2ΓC(s)L(s)(0.0128−0.999i)Λ(2−s)
Λ(s)=(=(416s/2ΓC(s+1/2)L(s)(0.0128−0.999i)Λ(1−s)
Degree: |
2 |
Conductor: |
416
= 25⋅13
|
Sign: |
0.0128−0.999i
|
Analytic conductor: |
3.32177 |
Root analytic conductor: |
1.82257 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ416(289,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 416, ( :1/2), 0.0128−0.999i)
|
Particular Values
L(1) |
≈ |
1.36400+1.34662i |
L(21) |
≈ |
1.36400+1.34662i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 13 | 1+(1−3.46i)T |
good | 3 | 1+(−1.65−2.87i)T+(−1.5+2.59i)T2 |
| 5 | 1+5T2 |
| 7 | 1+(−1.65+2.87i)T+(−3.5−6.06i)T2 |
| 11 | 1+(−1.65−2.87i)T+(−5.5+9.52i)T2 |
| 17 | 1+(−1.5+2.59i)T+(−8.5−14.7i)T2 |
| 19 | 1+(−1.65+2.87i)T+(−9.5−16.4i)T2 |
| 23 | 1+(1.65+2.87i)T+(−11.5+19.9i)T2 |
| 29 | 1+(−2.5−4.33i)T+(−14.5+25.1i)T2 |
| 31 | 1+31T2 |
| 37 | 1+(4.5+7.79i)T+(−18.5+32.0i)T2 |
| 41 | 1+(−1.5−2.59i)T+(−20.5+35.5i)T2 |
| 43 | 1+(−4.97+8.61i)T+(−21.5−37.2i)T2 |
| 47 | 1−6.63T+47T2 |
| 53 | 1+8T+53T2 |
| 59 | 1+(−1.65+2.87i)T+(−29.5−51.0i)T2 |
| 61 | 1+(−4.5+7.79i)T+(−30.5−52.8i)T2 |
| 67 | 1+(−4.97−8.61i)T+(−33.5+58.0i)T2 |
| 71 | 1+(−4.97+8.61i)T+(−35.5−61.4i)T2 |
| 73 | 1+4T+73T2 |
| 79 | 1+6.63T+79T2 |
| 83 | 1−13.2T+83T2 |
| 89 | 1+(−0.5−0.866i)T+(−44.5+77.0i)T2 |
| 97 | 1+(3.5−6.06i)T+(−48.5−84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.08393222630473618117997142836, −10.41146494491583582180983605036, −9.555010468223417486345730071864, −9.035589203665678882415639145963, −7.87273121172963451066923323974, −7.05029437252841768071911368005, −5.15945733075600577077676271597, −4.38431073096514722446644601749, −3.73067982323631693501141951886, −2.21698153858537655787529738817,
1.31218675849413734944107603764, 2.48349446992287228183830790898, 3.53363272033310291419500223737, 5.66840111213850985847655353908, 6.20630909665338915881201577156, 7.60955100485619283118037922508, 8.137168737027138719099948848284, 8.760104854956895070987330381274, 9.834054597293179805332052482999, 11.43994153228692479353828043939